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INTRODUCTION

During the past four decades, the research efforts of investigating the mechanical response
behaviour of engineering materials, under various types of loading, have been ultimately
significant. The interpretations and applications ofmechanical response data have simulated
powerful advances in research interest and in engineering practice. In this context, widespread
research work on the subject has established well-profound concepts, principles and results.

The purpose of this monograph is to introduce the principles of the mechanical
response ofvarious classes ofengineering materials, the identification and interpretation of
the mechanical response data, properties evaluation, and, whenever possible, application of
the data to structure-properties relationships. The monograph deals with the subject matter
in two volumes. VolumeL contains eight chapters and three appendices, concerns itselfwith
the basic concepts as pertain to the entire monograph, together with the response behaviour
ofengineering materials under static and quasi-static loading, Thus, Volume I is dedicated to
the introduction, the basic concepts and principles ofthe mechanical response ofengineering
materials, together with the pertaining analysis of elastic, elastic-plastic, and viscoelastic
behaviour. Volume II, consists of ten chapters and one appendix, concerns itself with the
mechanical behaviour of various classes ofmaterials under dynamic loading, together with
the effects oflocal and microstructural phenomena on the response behaviour of the material.
Volume II contains also selected topics concerning intelligent material systems and pattern
recognition and classification methodology for the characterization of material response
states. In the majority of the presentation, the two volumes of the monograph treat the
considered subjects in a generalized three-dimensional fashion.

Statk loading?
In the case ofstatic loading, one has, at any particular instant of time, a condition of
static equilibrium. A conventional static tensile test ofa material specimen within its
linear elastic range would be a typical example ofthis situation.

Quasi-static Loading?
A quasi-static deformation process, although it is, in general, time-dependent, is in
reality a sequence ofstates ofstatic equilibrium. Typical illustrations ofa quasi-static
deformation process are the quasi-static creep and relaxation processes of engineering
materials.

Dynamic Loading?
The deformation process that occurs in the material under dynamic loading differs to
a large extent from those due to static or quasi-static loading. When the material is
subjected to dynamic loading, e.g., a very high rate impulse, the portion ofthe body
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that contains the point of impact is stressed instantaneously, while the other portions
may not have yet experienced the effect ofthe imposed impact. This is due to the fact
that the imposed dynamic effect will require time to travel, i.e., to propagate, through
the body. Such propagation of the dynamic effect through the body occurs with a
particular velocity ofpropagation which would depend on the specific characteristics
of the material and the boundary conditions at the instant of time considered. This
phenomenon is referred to as "wave propagation". That is, the dynamic deformation
ofmaterials, under dynamic loading, involves stress wave propagation, whereby the
inertia and inner kinetics of the material specimen play important roles.

At strain rates ofthe order 10.6 to 10's s", the creep behaviour of the material is the
primary consideration and creep laws are used to describe the mechanical behaviour. At
higher rates, e.g., in the range of I0" to 10.3 s·" a uniaxial test, or a quasi-static stress-strain
curve obtained from a constant strain-rate test is used to describe the material behaviour.
Although the quasi-static stress-strain curve is often treated as an inherent property of the
material, it is a valid description of the material only at the strain rate at which the test was
conducted. At higher strain rates, the mechanical response of the material may change, and
alternate testing techniques have to be used. The range of strain rates from 10" to 102 s·, is
generally referred to as the intermediate or medium strain-rate regime. Within this regime,
strain-rate effects become a consideration in most materials (e.g., metals), although the
magnitude of such effects may be quite small. Strain rates of 103 s" or higher are generally
treated as the range ofhigh strain-rate response. It is within the high strain-rate range (103 s"
or higher) that inertia and wave-propagation effects become important in interpreting
experimental data. At these high rates of strain, care must be taken to distinguish between
average and local values of stress and that may be the result of one, or more, high-intensity
stress wave propagating through the material. At strain rates of IOS s" or higher, we are
generally dealing with "shock waves" propagating through the material. At these high rates,
there exists a transition from nominally isothermal conditions to adiabatic conditions.

In the mechanics of deformable media, we deal with physical events, e.g.
deformation and flow, that occur and evolve, in both space and time, independent of any
particular coordinate system that may be used to observe them. In a proper mathematical
description, such events and their governing laws are expressed in terms oftensorial
quantities. The invariance of tensors under coordinate transformation highlights a principal
reason for employing tensor calculus in the study of the mechanics of deformable media.
When transformation is carried out from one homogeneous (rectangular) coordinate system
to another, the resulting tensors are identified as "Canesian tensors". However, in dealing
with tensor transformation between general "curvilinear" coordinate systems, the
pertaining tensorial quantities are referred to as "Curvilinear" or "General" tensors. In
Chapter 1, the reader is introduced to Cartesian tensors. Curvilinear tensors, however, are
considered in Appendix A (Volume 1).

Two mechanical approaches are generally considered in the study of phenomena and
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problems concerning the mechanics ofdeformable media, i.e., the "microstructuraf' approach
and the "continuum mechanics' approach.

In the "microstructuraf' approach, the macroscopic medium is considered to consist
of a large number of structural elements. Such elements are assumed to be in continuous
interaction with each other, and, hence their individual responses are seen to be mutually
inter-dependent. The behavior ofa statistical ensemble ofsuch elements may be studied using,
for instance, statistical or stochastic mechanics.

Conventionally, however, the description ofmaterial behavior is based on "continuum
mechanics" models that generally refer to homogeneous media. In the "continuum
mechanicS' approach, the actual microstructure ofthe medium is disregarded and the medium
is pictured as a "continuum" without gaps or empty spaces. Hence, the configuration of the
assumed continuous medium would be described by a continuous mathematical model whose
geometrical points are identified with material particles of the actual physical medium. The
aim ofChapter 2 is to provide the reader with a concise introduction of the basic assumptions
and principles of Continuum Mechanics with an emphasis on those specifically used in the
remainder of the book.

As mentioned earlier, engineering materials, when subjected to external loading,
experience deformation and flow that evolve in space and time. Thus, in Chapter 3, we
first consider the kinematics of involved deformation in the continuous material body and
the determination of the pertaining strain by adopting a number of conventional measures.
Second, we analyze the relationships between the sequential configurations that the parts of
a "continuous" material body may acquire with the passage of time. Subsequently, in
Chapter 4, we attempt to study the restrictions that classical thermodynamics impose on the
theory of deformation of solids, and to seek information concerning the thermodynamics of
continuous media.

Different materials of the same geometry may respond differently under identical
external effects. Such difference in response is often attributed to the inherent constitution
of the material. Consequently, the response behaviour of a particular material, or of a
class of such material, is described mathematically by so-called "constitutive relations".
These constitutive equations define the response behaviour of idealized media within a
specific range of external effects. Accordingly, they only approximate the response
characteristics of real materials, within a specified domain of actual service conditions.
Constitutive relations establish, under certain physical and thermodynamical restrictions,
the connection between the stimuli acting on the material specimen and the evolution of
the occurring response. Thus, Chapter 5 attempts to guide the reader throughout a transition
between the general concepts and principles, which are presented in Chapters 1 to 4, and the
task ofestablishing the response behaviour ofengineering materials, as presented in Chapters
6 to 15. In this, the elastic response behaviour of the material is dealt with first.
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Elastic behaviour of an engineering material depends only upon the stress level in
the material, meanwhile, it is not strain- or time-history dependent. Further, an elastic
deformation process is described, from a thermodynamical point of view, as dealt with in
Chapler 5, to be a reversible process. Thus, upon the removal of the load, a complete
recovery to the undeformed configuration would take place. An elastic response of an
engineering material is formulated within the realm ofMclassical elasticity". Such an elastic
response could be linear or nonlinear pending on the form of the constitutive law that is
used in its description. In this context, Chapler 6 deals first with the general nonlinear
elastic behavior, then it introduces the required assumptions and postulates in order to reduce
such response to the idealized case oflinear (perfect) elastic behavior.

Two ways in which the behaviour of real solids deviates from a perfect elastic one:

First, the stress-strain relationship may be nonlinear and may also depend on the
loading path. Further, the pertaining stress-strain curve may show hysteresis loops.
Thus, the resulting stress-strain relationships may not be "uni-valued'.

Second, the stress-strain relationship may be time-dependent. Thus, phenomena such
as creep and stress-relaxation could become of importance, in determining the
mechanical response of the real solid.

In general, "inelastic" solids show the above mentioned two types of deviation from
a perfect (linear) elastic behavior. That is, the stress-strain relation is both time-dependent and
nonlinear. Thus, inelastic deformation depends, in general, as dealt with in Chapter 7, on
the stress level and both the strain- and time-history of the material. A transition to the
important subject of creep and stress-relaxation ofmetallic systems is dealt with at the end
ofChapter 7.

With the recent advances in material science and the parallel extensive industrial
demands on advanced industrial materials such as high polymers and polymeric base
composite systems, the identification ofthe viscoelastic response ofengineering materials has
gained recently a strong momentum in the realms of industrial techniques and applications.

High polymeric materials are organic substances of high molecular weight, the
technical importance of which depends on their particular microstructure. This class of
materials may include, for example, rubber in its various forms, synthetic rubber-like
materials, commercial plastics, and natural and synthetic textile fibres. Other few examples
ofa viscoelastic material would include a wide range of inorganic polymeric systems such as
silicones and glass resins, constituents of polymeric base systems, natural fibres such as wood
and the by-products of such fibres as, for instance, paper and board, building materials such
as concrete, and a large class of biomaterials, among others. These materials are "time­
dependent' in response and possess a "time-memory". Attempts to characterize the behaviour
ofsuch materials under the action ofextemalloading, consequently, gave rise to the science
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of "rheology" within which the phenomena now labeUed "viscoelasticity" is well defined and
intended to convey mechanical behaviour combining response characteristics of both an
elastic solid and a viscous fluid. A viscoelastic material is, thus, characterized by a certain
level ofrigidity ofan elastic solid body, but, at the same time, it flows and dissipates energy
by frictional losses as a viscous fluid. Chapter 8 treats the subject of viscoelasticity of
engineering materials in a quite comprehensive manner. The important subject of
thermoviscoelasticity is also dealt with in Chapter 8.

The significant importance of the subject of the dynamic response of engineering
materials has, also, gained in recent years a strong momentum in a wide scope of engineering
practice. Dynamic properties ofmaterials appear to be receiving more attention at present as
a result of such current applications as space structures, machine components, advanced
aircraft, and nondestructive evaluation of engineering materials and structures. Familiar
applications of the study of dynamic deformation of engineering materials may include, for
instance,

identification, modeUing, and prediction ofthe response behaviour ofdifferent
classes ofengineering materials under the effect of rapidly changing loads.
development ofnew materials that can perform favourably from a design point
ofview when subjected to dynamic loading.
study ofthe dynamic response ofengineering members and structures with the
inclusion ofthe dynamic behaviour of the pertaining materials.
identification of the response of materials during dynamic fabrication
processes, e.g. metal forming operations under rapidly changing loads,
explosive welding and compaction operations.
development of nondestructive evaluation techniques that are based on
dynamic-effeet phenomena, e.g., acoustic emission, ultrasonics and acousto­
ultrasonics.
shock synthesis to produce new elements or compounds.
study ofcrash worthiness.
development ofanti-collision shielding for space vehicles.
traditional and novel armour and anti-armour concepts for military
applications.

In Chapter 9, we introduce the subject of the response of metallic materials to
dynamic loading. In this, the distinction ofhigher rates from lower rates is made not on the
basis oftime-dependence of the material behavior, as we dealt with, for instance, in Chapter
8, but rather on the necessity of including inertia forces in the pertaining dynamic analysis.

Chapter 10 deals with the subject of plastic instability and localization effects in
engineering materials. In this context, a decrease in stiffness due to geometrical change
and/or material softening caused by deformation is responsible for the occurrence of instability
phenomena in engineering materials within the plastic range; i.e., beyond the yield point.
Such phenomena manifest themselves in various ways; e.g., buckling, bulging, necking and
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shear banding. Once such instabilities are started, they tend to persist and the stiffitess of the
specific cross-sectional area of the specimen decreases; therefore deformation intensifies
locally and eventually leads to final collapse and/or failure. Because the occurrence of such
instabilities is an important precursor to collapse or failure, computational prediction of the
onset and of the augmentation of these instabilities is essential and indispensable in
understanding the ultimate strength ofengineering materials, and in predicting and improving,
for instance, the formability of ductile solids.

In rigid body dynamics, it is assumed that, when an external force is applied to anyone
point of the body, the resulting effect sets every other point of the body instantaneously in
motion, and the applied force can be considered as producing a linear acceleration of the
whole body, together with an angular acceleration about its center of gravity. In the theory
ofdeformable media, however, the body is considered to be in equilibrium under the action
ofthe external applied forces, and the occurring deformations are assumed to have reached
their equilibrium static values. This assumption could be sufficiently accurate for problems
in which the time between the application of the force and the setting up of effective
equilibrium is short compared with the time in which the observation is made. Meanwhile, If
the external force is applied for only a short period of time, or it is changing rapidly, the
resulting effect must be considered from the point of view of"stress wave" motion. Thus,
when a localized disturbance is applied suddenly into a medium, it will propagate to other
parts of this medium. The local excitation is not detected at other positions of the medium
instantaneously, as some time would be necessary for the disturbance to propagate from its
source to other parts of the medium. This simple fact constitutes a general basis for the
interesting subject of "wave propagation". In the particular case, when the suddenly applied
disturbance is mechanical, e.g., an impact force, the resulting waves in the medium are due
to mechanical stress effects and, thus, these waves are referred to as "mechanical stress
waves", or simply "stress waves".

The propagation of stress waves in solids can be divided into two categories,
"elastic" and "inelastic ". When loading conditions result in stresses below the yield point,
solids behave elastically and obey Hook's Law, and consequently stress waves are "elastic ".
As the intensity of applied loading is increased, the response of the material is driven out of
the elastic range to a possible inelastic behavior. The behavior here may involve large
deformation, internal heat generation, and often failure of the solid through a variety of
mechanisms. In this context, "plastic" waves can be propagated in a material, such as a
metal, which exhibits the phenomenon of yielding, when stressed beyond its proportional
limit. The subject ofelastic wave propagation in engineering materials is dealt with in Chapter
11. Meanwhile, in Chapter J2, we consider the plastic response of engineering materials
under dynamic loading, whereby a rate-effect phenomenon might be occurring in the material
and the inertia forces would be included in the equation ofmotion.

Chapter J3 deals with the identification problem of the linear viscoelastic response
behaviour of an engineering material using dynamic experimental measurements. In this
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context, a linear viscoelastic material is considered as a dynamic system, whereby, a dynamic
system identification method is developed for the determination of the relaxation or creep
function of the material.

In most ofviscoelastic material components, the presence ofmechanical dissipation
can effectively change the nature of wave motion in them. In addition to the significant
mechanical dissipation that can occur in viscoelastic materials, it is well-recognized that these
materials are "dispersive". In view of the latter property, phase velocity of a wave
propagating in a viscoelastic material will depend on wave frequency. More specifically,
waves ofhigh frequency will propagate in viscoelastic materials with a greater phase velocity
than if these waves have a low frequency. Consequently, a mechanical disturbance would
continually change in shape during its motion in a viscoelastic medium. Further, the
attenuation ofhigh frequency waves in viscoelastic materials is greater than that ofwaves of
low frequency. In this context, Chapter 14 concerns itselfwith the phenomenon ofwave
propagation in a viscoelastic solid and the associated with boundary value problem.

The current technology of the design and manufacturing of laminated and fibre­
reinforced composites is faced with problems essentially related to the inherent nature ofthe
mechanical response of the different constituents of the microstructure, the formation of
interfaces between such constituents and the evolution of the associated deformation
processes under loading. Optimal design of such material systems is becoming a very
progressive and challenging domain in both applied mechanics and material science. Thus, the
increasing use of such materials is inciting new developments to be made within the context
ofmacro- and micro-mechanical constitutive modelling, applications of such materials under
variable boundary conditions, experimental testing methods, computational methods of
analysis, and optimization. A new dimension ofoptimal design is being realized by building
new composite systems through direct tailoring of the microstructure, e.g., by judicious
reinforcement and mixing (hybridization) of the constituents of the microstructure within a
specific topological frame ofreference and to satisfy the boundary conditions involved. In this
context, theoretical and experimental studies of the dynamic stress-strain relations ofhybrid
composites have become significantly important. The increased interest in the subject matter
has been motivated recently by the increasing number ofengineering applications and, as well,
by the contributions provided by such studies to a better understanding of the mechanisms of
deformation of such material systems when subjected to a dynamic loading environment. In
this, Chapter 15 reviews recent research efforts pertaining to the micromechanics of
polymeric fibre-composite systems, in general, and the optimization of the microstructure in
the case of short-fibre composite systems.

Chapter 16 deals with the microstructural or microscopic effects on the response
behaviour of structured material systems. In this, the material system is considered as a
heterogenous medium ofactual microstructural elements. These elements are seen to exhibit
random geometric and physical characteristics. Due to the discrete nature of the
microstructure, the pertaining deformation process and its space- and time-evolutions are
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considered to be stochastic in character. Thus, the overall response behaviour ofthe material
is formulated by the use ofprobabilistic concepts and statistical theory. An important feature
of the presented analysis is the introduction of a so called "Material Operator" of the
structured material system that contains in its argument the significant response characteristics
of the microstructure. These concepts are, first, utilized to formulate the outlines of a
stochastic rnicromechanical model for the deformation ofa heterogenous elastoplastic system.
Then, the presented approach is extended to include the analysis of probable internal damage
mechanisms in this class ofmaterial.

Engineering materials are used either for their inherent structural strength or for
their functional properties. Often a feed back control loop is designed so that the
mechanical response of the material is monitored and the environment that is causing such
a response can be controlled. The evolution of a new kind of material termed "Intelligent",
"Smart", or "Adaptive" witnesses a significant development in materials science whereby
the referred-to smart material adapts itself to suit the environment rather than necessitating
to control the same. In this context, development in the area of materials research aims at
incorporating intelligence into engineering materials, enabling them to sense the external
stimuli and alter their own properties to adapt to the changes in the environment.
Chapter 17 presents "an overview" of possible forms of intelligence that may be
incorporated in these materials. Three basic mechanisms of intelligent materials, namely,
the sensor, processor and actuator functions are described. Implementation of these in the
microstructure of various materials, as welt as associated algorithms and techniques are
ittustrated. Different models, control algorithms and analyses are reviewed and their
potential applications in engineering materials are presented.

Chapter 18 deals with the design procedure of a computer-based expert system, in
conjunction with a non-destructive quantitative examination technique, e.g., acousto­
ultrasonics, for the identification ofmaterial response states.

Acousto-ultrasonics (AU) is a relatively new quantitative non-destructive examination
technique that combines aspects of conventional "Ultrasonic" and "Acoustic Emission"
practices. It has been proven to be a suitable approach to quantify microstructural and
morphological states ofmaterials and the related mechanical properties.

In the AU practice, the multi-interactions of the ultrasonic-wave with the material
microstructure usually result in complicated waveforms that are quite difficult to analyse. A
relatively new approach to the analysis of AU signals is the use of"Pattern-recognition and
Classification Methodologies'. In this approach, acousto-ultrasonic waveforms are identified
as belonging to a number ofclasses, where each class represents one ofdifferent states of the
tested material-property. For this purpose, each waveform is mathematically treated as a
multi-parametric entity, which is called a "pattern vector". Each component of such a pattern
vector represents a value ofa parameter, called ''feature'', which is used for the identification



www.manaraa.com

9

ofthe AU signal. In the pattern-recognition practice, a computer-based pattern-recognition
system, labelled "Pattern-recognition Classifier", is designed on the basis of AU signals
pertaining to known material states ofa particular tested response or material property. Two
case studies are being dealt with in Chapter 18, i.e., characterization ofthe stress-relaxation
response of a class of polymeric system, and the identification of residual impact properties
of such a system.

Throughout the text, generalized tensorial notations are used. For simplification,
however, the presentation has been limited, as much as possible, to Cartesian tensors.
AppendiX A (Volume I), however, introduces to the reader the basics of "Curvilinear or
General tensors". This will prove to be particularly useful when reading Chapter 10.
Appendix B (Volume I) presents the definition and a summary of the properties ofboth the
delta and step functions. These functions are used frequently throughout the text. Meantime,
the important subject of integral transformation is dealt with in Appendix C (Volume I).
AppendiX D (Volume II) deals with the definition and basic properties ofz-transform. The
latter is employed throughout Chapter 13.

In the presentation, vectors and unindexed tensor quantities are indicated in general
by bold. The author has used majuscules to identifY the undeformed configuration or the
original state ofthe material and minuscules to designate the corresponding deformed state.
Equations, figures and tables are numbered within the chapter; for example, Fig. 2.1 identifies
Fig. 1 ofChapter 2.
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CHAPTER 9

TRANSITION TO THE DYNAMIC BEHAVIOUR
OF ENGINEERING MATERIALS

9.1. Introduction

In this chapter, we introduce the subject of the response of metallic materials to
dynamic loading. In this context, ifwe consider the term "dynamic" to be solely characterized
as "time-dependenf', then we are in fact, as Lindholm (1962, 1964 and 1978) pointed out,
including the entire range of material performance. In other words, the commonly called
"static" or "quasi-static" deformation, e.g., creep and relaxation, is, in effect, "dynamic" or
"time-dependenf'. The majority of us, however, may be more accustomed to thinking of
dynamic loading as associated with high loading rates or high deformation rates, with the
adjective "high" referring to rates above those achieved on a standard testing machine. In this,
the distinction ofhigher rates from lower rates is often made, however, not on the basis of
time-dependence ofthe material behaviour, but rather on the necessity ofincluding inertia
forces in the pertaining dynamic analysis.

However, according to the laws ofmechanics, see Chapter 2, the inertia forces are
generally included in the equations ofmotion, not in the constitutive relations of the material.
Further, one may often argue that the mechanisms which lead to time-dependency in the
constitutive equations for plastically deforming metals are not significantly different, if they
are not basically the same for low and high rates of loading, so that on the basis of the
constitutive relations alone, the distinction between static and dynamic loading may not be
easily made (e.g., Lindholm, 1962, 1964 and 1978).

9.1.1. LOADING REGIMES

Following Lindholm (1962, 1964 and 1978), and the presentation in the introduction
to this book, the following loading regimes of engineering materials may be identified:

Sub-static regime. The lowest strain rate regime is that generally associated with
creep, where, as dealt with in Chapters 7 and 8, the specimen is deformed under
constant load or stress and the strain vs. time or creep rate is recorded. The counter
part of creep is the so-called "stress -relaxation" where the material specimen is
instantaneously strained to a specific strain level, which is maintained constant for the
entire duration of the experiment, and the stress vs. time or relaxation-rate is
recorded.

11
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Static regime. The next regime is generally referred-to as static testing. The term
"static" is emphasized as it refers, in general, to stationary or time-independent
behavior. In this regime, the strain rate level should be maintained constant, and be
identified in conjunction with the test results. Here, standard hydraulic, or preferably
screw machines are used to apply the load.

Dynamic regime. In this regime, inertia forces become important, and mechanical
resonance in the machine and the specimen must be considered. High strain rates from
approximately 50 s·\ to 1c! s· can be obtained with mechanical impact from a moving
mass, or by explosively generated pulses. At very high or "hypervelocity" impact, the
impacting projectile is usually accelerated by means of a light gas gun or explosive
generator. The analysis of the impact results must include the propagation of elastic
and plastic waves. At the highest impact velocities, "material compressibility"
becomes dominant and shock waves are developed. In this range, strain is not the
appropriate deformation indicator, but rather the time-dependent particle and wave
velocities are measured. Thus, the response of the material is considered within the
realm of wave propagation theory. In this chapter, we introduce some results
pertaining to the behavior of various metallic materials to high strain-rate loading,
meantime the subject ofwave propagation in such materials are dealt with within the
scope of elastic wave propagation in Chapter II, and in the context of dynamic
plasticity in Chapter 12.

The mechanical response ofmetals under high rates ofloading may differ significantly,
from the corresponding response within the static regime. In this context, one may refer to
the early experiments by Hopkinson (1905) when he conducted a series of dynamic
experiments on steel and concluded that the dynamic strength was at least twice as high as
its low-strain-rate strength. In this context, significant increases in flow stress were reported
(e.g., Clifton, 1979) as strain rates of the order of 10' s·\ are attained. Such significant rise in
flow stress leads some researchers to believe that there might be indeed a "limiting strain­
rate" at which the strength of the material might approach infinity. On the other hand,
however, it is known that steels undergo a ductile-to-brittle transition when the strain rate is
significantly increased.

Kolsky (1960) devised a method for measuring the stress-strain behavior at very high
rates of loading, without setting up stress waves in the material specimen. Applying his
method, Kolsky used specimens in the form of thin circular disks which were placed between
two steel bars of the same diameter as the discs along which stress pulses were propagated.
With this arrangement, the inertia of the specimen and plastic wave propagation in it could
be neglected, and since the wave propagation in the steel bars was elastic and amenable to
calculation, the stress-strain relation of the specimen could be determined; see, also, Davies
and Hunter (1963) and Kolsky (1965). An apparatus was subsequently developed by Kolsky
and Douch (1962) to carry out such measurements. In this method, short cylindrical metal
rods were fired from an air gun to impinge axially on a steel bar of the same diameter as the
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rods. The stress was measured by observing the amplitude of the elastic wave propagated in
the steel bar. Meanwhile, the plastic strains were measured by examining the specimens after
impact. By using a series of specimens fired over a range ofvelocities, dynamic stress-strain
curves were obtained. The "Kolsky bar' often referred-to as the "Split Hopkinson Pressure
Bar' is shown schematically in Figure 9.1.

SUSPENSIONS

EXPLOSIVE

HEATING
WIRE

OSCILLATOR

SPECIMEN

CATHODE
RAY

OSCILLOGRAPH

CONDENSER MICROMETER HEAD

Figure 9. J. The "Kolsky bar". (Source: Kolsky, H. (1960) Viscoelastic
waves, in Int. Symp. on Stress Wave Propagation in Materials, Ed. N.
Davids, Interscience Publishers, London, pp. 59-90. Reprinted with
pennission).

Figure 9.2 is due to Kolsky (1965). It shows a comparison between the "dynamic"
stress-strain curve for annealed bars ofaluminum [better than 99.5 per cent pure] obtained
according to the above described method, and the "static" stress-strain curve for similar bars
measured on a conventional testing machine. It is seen from the figure that there is a definite
strain-rate effect. Meanwhile, Figure 9.3 shows a correlation between the velocity of impact
and the magnitude of the permanent strain in the material.

As we discussed in Chapter 7, materials such as metals exhibit, in general, nonlinear
stress-strain relations and plastic yielding, and the stress-strain curve for unloading is generally
different from that for loading (see, also, Chapter 12). When the strain rate increases, the
deformation process changes gradually from fully isothermal to fully adiabatic, as there is not
enough time for the heat generated during the deformation process to escape out ofthe body.
This gives rise, in some cases, to adiabatic shear instabilities that have a profound effect on
the mechanical response of the material. This phenomenon is discussed in the following
chapter (Chapter 10) within the scope ofplastic instability and localization effects.
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The rate dependency ofthe mechanical behavior ofmaterials in general is a key factor
in understanding the fundamental mechanisms involved in the deformation process (Campbell,
1968). According to Campbell (1968), the realization of this fact for the cases ofmetals and
non-metals was delayed for two reasons: First, many common alloys are relatively rate­
insensitive at normal rates of strain, so that it is necessary to use experimental techniques
capable ofmeasuring accurately small increments of stress and strain over a very wide range
of strain rate. Second, the fundamental processes of plastic flow in metals could not be
investigated thoroughly until adequate techniques were developed for observing dislocations
and their properties. In this context, the possibility of direct measurement of dislocation
velocities was a major step towards the goal ofrelating macroscopically observable quantities,
eg., stress, strain and strain-rate, to basic microstructural deformation mechanisms in metals,
such as dislocations and other microstructural rate-controlling processes.

9.2. Response Behaviour ofMetals under Dynamic Loading

9.2.1. STRAIN-RATE SENSITIVITY / STRAIN-RATE HISTORY

Some metals, e.g., aluminum (FCC) and copper (FCC), may show sensitivity to both
strain-rate and strain-rate history. Other metals may show sensitivity to strain-rate only, e. g.,
steels (BCC) and titanium (HCP).

9.2.2. THE JUMP TEST "INCREMENTAL STRAIN-RATE TEST"

Awell-known experiment to study the history effects in metals is the so-called "jump test',
often referred-to as the "incremental strain-rate tesf'. The main objective of performing the
referred-to jump tests is to obtain information concerning the dynamic response of the
material that may be used in the development of the pertaining constitutive equations.

A jump test is effected by combining two types of loading: a quasi-static loading is
applied first and, without unloading, it is followed by a dynamic loading. Typical of the
apparatus used to perform a jump test is the stored-torque "Split Hopkinson Bar"; e.g.,
Campbell et al. 1977 and Duffy, 1979. In this experimental set-up, the specimen is a thin­
walled tube placed near the center ofthe bar and loaded in torsion. Quasi-static loading is first
applied by, e.g., an electric motor at one end of the specimen, which turns the bar against a
clamping mechanism. Dynamic loading is then applied from the other end by the sudden
release ofa stored torque. In Campbell's apparatus (Campbell et al., 1977), the clamp is the
crucial part of the apparatus; its release is effected by the fracture of a brittle bolt. The
referred-to clamp must meet two requirements: First, it must provide as short time as possible
between first arrival ofthe pulse and the establishment ofa constant strain rate. In referred-to
Campbell's bar, this rise-time is 25 or 30 ~s which corresponds to about 1.5% strain
accumulation in the specimen before a constant strain-rate of 103 s·' is attained. Second, the
pulse must be pure torsional, i.e., not be accompanied by pulses in other directions, e. g., an
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axial pulse or a bending pulse. This functional requirement of the apparatus can be
incorporated in the design of the clamp itself (Duffy, 1979).

Figure 9.4 shows schematically an example of the stress-strain curve (Senseny, Duffy
and Hawley, 1978) which was obtained during a jump test. The lowest curve in the Figure is
forloading ata constant low strain rate, Yi, e.g., of the order of 10.4 or 10.3 S·I The highest
curve was obtained at a constant high strain rate, Yr ,e.g. 103 s·'. During a jump test, the
stress-strain curve follows the path ABeD. As shown in the figure, at point B. the strain rate
changes abruptly from Yi to Y. ,with a resulting increase in stress ofa'tl .

For many purposes, the "strain-rate sensitivity" of a material is evaluated by
comparing values along constant strain rate curves, e.g., the curves corresponding to constant
strain rates Yi and Yr in Fig.9.4. However, a comparison ofconditions at points C and F
shows that the strain and strain rate remain the same at theses points, while the stress is
different. Thus, one may consider the possibility that the behaviour of the material may
depend on some other factor, one involving, say the "deformation history". Hence, with
reference to Fig. 9.4, a'th is often viewed as a measure of the "deformation history"
dependency, while a'tl is considered to be related to the "true strain rate sensitivity".

Figures 9.5 and 9.6 show the results, due to Lindholm (1964), for cyclic loading of
aluminum (FCC). In this context, Figure 9.5 shows the true stress vs. the true strain from
cyclic static-dynamic-static loading, while Figure 9.6 demonstrates the corresponding results
in the case of cyclic dynamic-static-dynamic loading. It is evident, from Figure 9.5, that the
stress in a dynamic test following static pre-loading is not equal to the stress found at the
same strain in all·dynamic loading (the dotted line). This difference is apparently due to
"strain rate history" (Duffy, 1979).

Bodner and Partoum (1975) and Bodner and Merzer (1978) define an "internal
variable", based ultimately on a relation between dislocation velocity and stress. With this
internal variable, these researchers evaluate the parameters in their constitutive equations from
the results of tests carried out, using jump tests, at constant strain rates. The results from the
jump tests are then used further to establish the validity of their constitutive equations.
Reference, in this context, is made Klepaczko (1968, 1975), Campbell et al. (1978) and
Ponter (1978).

Does the strain-rate history effect is influenced by the "dwell time" ?
For aluminum (FCC), for instance, Lindholm (1964) considered the effect of dwell
time at zero load. In this context, Lindholm loaded a specimen dynamically at 8%
strain, unloaded, and then reloaded dynamically. In this context, the results of Fig. 9.7
show a "history effect" for a dwell-time of three minutes and greater, while for a
dwell-time of450 J-ls none is observed.
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Hawley, R H (1978) Experiments on strain rate history and temperature
effects during plastic deformation ofclose-packed metals, J. Appl. Mech.
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For steels (BCC), jump tests were performed by Barraclough and Sellars (1974),
Both stainless steel and low alloy steel were considered. Rods of the material were
loaded in torsion at a temperature ofabout 1000 DC. Their results indicate that steel
is strongly influenced by strain rate (at least at this temperature). On the other hand,
steel appeared almost insensitive to strain-rate history, as far as the jump test is
concerned. Jump tests to higher strain rates were performed by Wilson et al (1979).
Again the results show a strong strain rate sensitivity, but an insensitivity to strain rate
history (see Duffy, 1979).

A peculiar aspect of the behavior of steels was also noticed by examining the results
ofEleiche and Campbell (1976a) and pointed out by Duffy (1979). In this, it was shown that
all high strain curves reach a maximum and then tum down. The latter effect was suspected
by Duffy (1979) to be due to a material instability effect; see, e.g., Costin et al (1979). In
general, it appeared that steel (BBC) is not as sensitive to strain rate history effects as are
FCC metals, but that strain rate effects are high.

Within the strain rate range of 10-4 to 1rJ 5"1, constant and incremental strain rate tests
were performed by Tanaka and Nojima (1979) on 0.02% and 0.45% C. steels: 1) A 0.02%
C. steel (0.02% C; 0.01% Si; 0.31% Mn; 0.008% P; 0.012% S; balance is Fe), and 2) A
0.45% C steel (0.45% C; 0.24% Si; 0.64% Mn; 0.002% P; 0.13% S; balance. Fe). In this
context, after machining, the material specimens (5 rom in diameter, and 5 mm in length) were
annealed for 1 hr. at 800°C and cooled in a vacuum furnace.
A split Hopkinson pressure bar apparatus and an Instron testing machine were used for the
high strain rate (102 to 1rJ S-I) and low strain rates (1<r to 1(T2 S-I) tests, respectively. In the
incremental strain rate tests, a stepped striker bar was used in the Hopkinson bar apparatus.
In the tests in which deformation was rapidly stopped at high strain rates, a device (a stopper)
was installed between the input and output bars in the apparatus (see Tanaka and Nojime,
1979).
Constant strain rate tests were performed at plastic strain rates of €p = 10-4 to 103 S-I, and
temperatures of 78 to 290 "1<.. The relations between flow stress 0 and the plastic strain rate
(log Ep), at the plastic strain €p = 5% are shown in Figures 9.8 a&b for 0.02%C and 0.45%
C steels, respectively. As shown in these figures, the stresses are considerably affected by the
plastic strain rate, especially at high temperatures.
Incremental strain rate change tests were performed by Tanaka and Nojima (1979) at both
high and low strain rates, and the values of the strain rate sensitivity of the stress as defined
by equation (9.1) below were determined.

Strain rate sensitivity or the stress: (9.1)
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Figure 9.8. F10w stress a- plastic strain raleEp relations. (a) 0.02" C. Steel; (b) 0.45" C.
steel. From: Tanaka, K. and Nojima, T. (1979) Dynamic and static strength of steels, In:
Mechanical Propenies at High Rates of Strain, Proceedings ofthe Second Conference on
the Mechanical Properties of Materials at High Rates of Strain, J. Harding (editor),
Oxford, 28-30, 1979, The Institute of Physics, Conference Series Number 47, pp. 166-73.
Reprinted with kind permission of the Institute of Physics.

The obtained values of h. are shown in Figures 9.9 a&b. Values of the strain rate sensitivity,
k.. = 0/ log e" ,were also detennined from the slopes of the 0 - log Ep relations which were
obtained from constant strain rate tests. In both types of steel, it was found by the authors that
the values of h, are larger than those of k, especially at low strain rates.

More typical of the behavior of copper (FCC) are the results of Klepaczko el al
(1977). These results were obtained by means ofa torsional "Kolsky bar", Fig. 9.10, in which
the pulse is initiated explosively rather than by means of a stored torque. This technique (for
explosive loading) was developed by DuffY el al (1971). The technique has the advantage of
producing a pulse with a much shorter rise-time (8 Ils), but of shorter duration (about 100
Ils). An extensive series ofjump tests were performed with this bar by Senseny el al (1978)
whereby four metals were tested; namely, aluminum (FCC), copper (FCC), magnesium
(HCP) and zinc (HCP). The results are shown in Fig. 9.11.
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Extensive series ofjump tests was performed by Eleiche and Campbell (1976a) and
Campbell et al (1977), whereby copper (FCC), titanium (HCP) and mild steel (BCC) were
tested. The tests were performed over a range of temperatures and to up to 60% of shear
strain. The results ofthese tests confirmed that copper is sensitive to strain rate history, while
titanium and mild steel are less sensitive to strain-rate history, but more sensitive to direct
effects ofstrain rate. Stelly and Dormeval (1978) performed experiments of the cyclic type,
involving complete unloading before reloading at a new strain rate, with specimens ofcopper
(FCC). In these tests, loading was in compression, using a Kolsky bar.

Other strain rate histories can be imposed besides that characterizing the jump test.
Eleiche and Campbell (1976b), for instance, performed. tests, on a moderately sensitive
magnesium alloy, in which the strain rate is reversed in sign while being changed in magnitude
from 103 to 10.3 s"; Figures 9.12 to 9.14.
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The work described above refers entirely to polycrystalline metals. Recently, some
progress has been made within the domain of establishing the history effects during the
deformation ofsingle crystals in the dynamic range of strain rates. Chiem and DufIY (1979),
for instance, carried out jump tests in shear with single crystals of LiF. Their tests were
performed on small cuboid specimens, four of which were mounted symmetrically in a
torsional Kolsky bar.

Summary
The FCC metals, e.g. aluminum and copper, are not strongly sensitive to strain rate.
However, history effects appear to be important.
Steel (BCC) and titanium (Hep), on the other hand, show a greater strain rate
sensitivity but only a small history effect.
For the HCP metals, in general, e.g., magnesium and zinc, it appears that insufficient
data are available.
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Some results obtained by Lindholm (1965), using the split Hopkinson pressure bar are
presented in figures 9.15,9.16 and 9.17 for three commercially pure, annealed, face centered
cubic metals: copper, aluminum and lead, respectively, and in figure 9.18 for iron. In these
figures, stress and strain are the true or instantaneous values. In fig. 9.18, the negative slope
of the stress vs. strain rate curve at the higher strains is generally associated with "strain
ageing'. Strain ageing occurs by diffusion of interstitiaIs, e.g., carbon and nitrogen, into the
active dislocation sites. The stress required to maintain flow is dependent upon the number
ofdislocations which are either free or bound by this atmosphere and, thus, on the effective
interstitial diffusion rates, the temperature and deformation rate during the test (Lindholm,
1965).
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Figure 9.15. Flow stress as a function of strain rate for copper.
Reprinted from "Lindholm, U. S., Dynamic defonnation of metals, in:
Behavior of Materials under Dynamic Loading, edited by N. 1.
Huffington, Jr., The American Society ofMechanical Engineers, New
York, 1965,42-61", with kind permission ofThe American society of
Mechanical Engineers.
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9.2.3. DYNAMIC BIAXIAL LOADING

Figure 9.19 is due to Lindholm (1965). It shows a plot ofstress and strain as functions
oftime in the case ofbiaxial loading ofmild steel. In this figure, a and 't are the tensile and
shear stresses, respectively, and e and y are the corresponding tensile and shear strains. For
this record, as discussed by Lindholm (1965), yield occurred about 6 milliseconds after initial
application ofthe load. There is strong instability in torsion, whereas yield is hardly noticeable
on the tensile stress trace. This may be due to both the material instability in mild steel,
associated with the upper and lower yield stresses, and the region of zero work hardening
during the lower yield point elongation. While the strain increments remain roughly
proportional, the stress increment vector assumes a direction tangent to the yield surface and
therefore normal to the strain increment vector during the period of zero work hardening.

Fig. 9.20 (Lindholm, 1965) demonstrates the results from 20 tests on mild steel at
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varying loading rates and stress ratios; from pure tension to pure torsion. The two curves
correspond to two different measures of stress. The abscissa is the square root ofthe second
invariant of the elastic strain tensor. This measure of the strain rate is nearly proportional to
the reciprocal of the time to yield or delay time. For the lower curve, of Fig. 9.20, correlation
is made with the square root of the second invariant of the deviatoric stress tensor, which is
equivalent to a distortion energy or octahedral shearing stress criteria. For this curve, there
appears a tendency for the tensile stress points to be consistently high (Linholm, 1965).
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9.3. Metallurgical Effects

9.3.1. STRAIN-RATE EFFECTS

A large number of investigations, carried out in the last four decade, or about, in the area
of dynamic behavior ofmaterials, have shown that effects due to high strain-rate could be
quite significant, e.g., the flow stress and the ductility of materials, the deformation and
fracture mechanisms are often quite different from those exhibited under static or quasi-static
loading. At very high strains and strain rates, there can be abrupt changes in deformation
mode leading to noticeably different microstructures. These lead to noticeable metallurgical
effects, e.g., microstructurally related flow stress, ductility, hardness and other related
mechanical property changes.
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Deformation induced metallurgical effects are now generally well documented to be the
result of stress or strain-induced microstructures, or microstructural changes in crystalline
(polycrystalline) metals and alloys. In many cases, strain hardening, work hardening, or other
controlling deformation mechanisms can be described by the generation, movement and
interactions of dislocations. These dislocations can produce drag or a range of impedances,
including obstacles to further motion.

While dislocations may be involved in a range ofmetallurgical effects which are evident
in the response behavior ofmetals and alloys, there are of course the controlling effects of
temperature, strain, strain-rate and the associated mechanical state.

Metallurgical effects, characterized mainly by the relationships between deformation
induced microstructures and residual mechanical properties, are therefore the result of the
complex interrelations between stress, stress state, strain, strain rate and temperature.

For instance, changes in plastic stress in a uniaxial tensile stress state may be expressed
by the following expression (Murr, 1987):

do = ( do ) d t + ( d~ ) d E: + ( ~ ) d T
dt ~ T dt dT ~ ~, E, T ~,~

(9.2)

where 0, t, E: and T are the stress, strain, strain rate, and absolute temperature, respectively.

The above expression indicates that even if the loading or deformation parameters are
controlled externally to the deforming material, there can be functional relationships which
could override that control. For instance, temperature in a deforming material can be raised
by increasing the strain, and by adiabatic heating at high strain rates. In addition, very high
pressures in the shock loading regime can create both transient and residual heating.

Figure 9.21 is due to Murr (1987). It illustrates a range of microstructures which
include planar dislocation arrays at relatively low levels of strain which evolve into more
dense and microstructurally different arrays at higher strain levels. These different arrays
(microstructures) are composed of twin-faults and martensite, whereby the martensite forms
at the intersections of twin-fault bundles.

The dislocation density changes may be related to changes in stress (or strain) through
expressions of the form (Murr, 1987):

P = Po + At

(9.3)

(9.4)
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where a is the flow stress, p is the current dislocation density (Po is the initial dislocation
density) and af) K and A are constants. In the context of flow stress or residual yield stress
(at constant strain), Eqn. (9.3) also expresses the fact that the residual yield or flow stress will
be increased by the creation ofdislocations. Since hardness and yield stress are inter-related,
the former is also expected to increase by the creation of such dislocations (Murr, 1987).

9.3.2. SHOCK LOADING AND RESULTING SHOCKWAVES

In describing the metallurgical effects ofshock and/or high strain-rate loading, one may
consider the effects of such loading on the evolution of the microstructure.

Shock Waves
Shock loading represents a regime at the extreme end of the high-strain rate deformation
range (- 106 to 107 81 ) as opposed to tensile or compression loading at strain rates of - 1<r
S·I). The pulse duration is very short, usually never exceeding 10 ~s. Peak pressure is the
dominant shock loading parameter in residual microstructure production where strain is small
or negligible.

Shock waves are characterized by an abrupt pressure front and a state of uniaxial
strain. This characterization includes a hydrostatic component of stress which, when greater
by several factors than the dynamicflow stress in the material, allows for the assumption that
the solid has no shear resistance (G = 0), i.e., a "hydrodynamic" behavior (e.g.,
Eichelberger, 1965).

In reality, however, this pressure front may not be abrupt. Thus, a shock wave
propagating into or through a material might be illustrated in the context of time and pressure
as shown schematically on Fig. 9.22 (Murr, 1987).

As shown in Fig. 9.22, the shock front is shown as a region where the material is
subjected to increasing pressure (stress) up to the peak shock pressure (P). The time of
application ofP (the peak shock pressure) is referred to as the "shock pulse duration", ~t.

As the pressure ofthe wave declines or is attenuated, the shock wave is called a "rarefaction
wave" or "wave portion".

Both the peak shock pressure and its duration can be expected to have some effect on
the shock dynamic behavior and the residual properties ofthe material. This is due to the fact
that the disturbance created within the shock front and the dynamic behavior of the material
will be altered by these two parameters. Fig. 9.23 shows examples of shock-induced
microstructures in face-centered cubic metals having a range of stacking fault free energies
(e.g., Murr and Meyers, 1983 and Murr, 1987).
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Figure 9.21. Examples of residual microstructures in type 304 stainless steel after deformation
in uniaxial tension to an average total strain e as indicated (room temperature; e=10') S·I). The
microstructures are characterized by increasing densities of dislocation arrays, stacking faults
and twin faults, with a'-martensite forming at twin-fault intersections and constituting a
prominent volume fraction nearly equivalent, as a volume fraction percent, to the total strain
value from about 25% strain "Reprinted from Murr, L. E., Metallurgical Effects of Shock and
High-Strain-Rate Loading, in Blazynski, T. Z. (editor), Materials at High Strain Rates (1987),
1-46, with kind permission from Chapman & Hall".
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Figure 9.22. Idealized (schematic) view of a shock pulse traveling through
a solid material. The z-direction is assumed to be normal to the plane shock
wave front and to the specimen surface "Reprinted from Murr, L. E.,
Metallurgical Effects ofShock and High-Strain-Rate Loading, in: Blazynski,
T. Z. (editor), Materials at High Strain Rates (1987), 1-46, with kind
permission from Chapman & Hall".

9.3.3. SHOCK-INDUCED MICROSTRUCTURE AND MECHANICAL PROPERTY
CHANGES

The peak pressure of the shock wave characterizes the shock front. This, by
consequence, influences the stress-induced generation of dislocations and other defects in
metals and alloys. In view of the very high strain rates involved in shock loading, the peak
pressure may result in some of the following unique deformation phenomena:

Pressures (shock stresses) of two orders of magnitude greater than the yield or flow
stress of metals and alloys are common, and, in most controlled plane wave shock
loading, strains are minimal «5%). But because the rapid movement of the shock
wave, dislocations interact within the shock front forming jogs which favor high
vacancy production (Kressel and Brown, 1967, and Murr, Inal and Morales, 1967). In
many shock-loaded metals and alloys, vacancies and vacancy clusters can contribute to
residual metallurgical effects such as hardness, ductility and thermal recovery.

At very high pressures, the heating associated with the high-pressure state (within the
shock front) can become very significant, and dislocations or other defects created by
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the propagating shock front can be partially or completely annihilated. Residual heating
after shock front may also create recovery, recrystallization and related microstructure
which may be characterized, for instance, by short twin segments, sub-grains, etc..

Some ofthe above mentioned features are illustrated in Fig. 9.24, which shows residual
hardness reduction as a result of shock-thermal recovery in nickel and type 304
stainless steel at plane shock pressures above about 60 Gpa.

Figure 9.23. Examples of shock-induced microstructures in face-<:entered cubic metals having
a range of stacking fault free energies. (a) Ni (15 OPa); (b) CII (15 Opa); (c) Fe-34% Ni (10
Opa); (d) Ni Cr (8 Opa); (e) Inconel600 (80Pa); (I) 304 stainless steel (15 Opal. "Reprinted
from Murr, L. E., Metallurgical Effects ofShock and High-Strain-Rate Loading, in: Blazynski,
T. Z. (editor), Materials at High Strain Rates (1987), 1-46. with kind permission from
Chapman & Hall"; After Murr and Meyers (1983).
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Figure 9.24. Thermal effects and thermal recovery associated with the high
pressure state in shock-loaded metals and alloys. "Reprinted from Murr, L.
E., Metallurgical Effects of Shock and High-Strain-Rate Loading, in:
B1azynski, T. Z. (editor), Materials at High Strain Rates (1987), 1-46, with
kind permission from Chapman & Hall". Graphs after Murr (198Ia).

During the production of dislocations (and other defects) in the shock front, heating
occurs. The latter, combined with the actual defect production, contributes to an
internal energy change across the shock front. On the basis of the work done on a solid
during rarefaction (stored energy calculations), Murr (1987) advanced (see, also, Murr
and Meyers, 1983) the following expression for the residual yield or flow stress of a
metal or alloy subjected to a 'planar' shock:

(0 - 00 ) = 2 a G Ib I{f(p)}l12 (9.5)
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Where 00 and a are constants for any particular material, G is the shear modulus, b
is Burgers vector and P is the peak shock pressure.
In the above expression (9.5), it is readily apparent that the left hand side of this
expression is dependent on the changes in residual mechanical properties of the material
under consideration, e.g., yield strength, ultimate tensile strength, hardness, following
the passage of a shock wave. These changes will be shock-pressure dependent. As
mentioned earlier, such dependence is the result of shock-wave-induced defects, for
instance, dislocations as illustrated schematically in Fig. 9.24.

As the peak pressure, in the plane-wave compressive shock loading, is increased, the
dislocation density increases and as a consequence in high-stacking-fault free energy
materials (such as nickel) the dislocation cell size (or cell center spacing) decreases. In
low-stacking-fault free energy materials where twin -faults form, the density or volume
fraction oftwin-faults will increase. If the twin-fault bundle thickness does not change
much, the consequence of this increased volume fraction is a corresponding decrease
in the twin-fault spacing. These parametric changes with peak shock pressure, at
constant shock pulse duration, are illustrated in the experimental data graphs in Fig.
9.24 (Murr,1987). It is particularly important to observe in this figure that:

- The residual hardness is functionally related to the square root of the peak
pressure, for a great variety of shock loaded metals and alloys.

- The two obvious deviations in the slopes of the straight lines occur for metals
dispersed with fine particles of thoria (Th02), or thoria dispersed particles. The
thoria dispersion not only hardens the material, but also locks up dislocations
created by the shock front. This feature is apparent on comparing the annealing
responses for NiCr (chromel A) and Thoria dispersed-NiCr, Fig. 9.25. The latter
figure attests not only to the hardness difference for dispersion-hardened metals
shown in Fig. 9.26, but also to the unique locking ability of dispersed particles
in shock-loaded materials: While dislocations can be created by the shock front
passage in spite of the presence of the dispersed particles, the particles could
effectively prevent the dislocations created by the shock front from annealing out,
thereby maintaining the shock-induced high hardness to very high temperatures.

- A summary review of the effects of peak shock pressure for plane-wave,
shock-loaded polycrystalline metals and alloys is shown in Figure 9.26 and, also,
as a microstructure-property map in Fig. 9.27. Both figures are due to Murr
(1987).

9.3.4. TWINNING IN SHOCK-LOADED METALS AND ALLOYS

One of the unique metallurgical effects of planar shock loading is the occurrence of
twins in crystalline metals and alloys at some critical pressure. This is especially unique
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because some metals such as nickel and molybdenum do not normally twin when subjected
to other modes ofloading.

In FCC-metals and alloys, twining is expected to occur initially in (001) orientations.
Twinning also occurs preferentially in low-stacking fault free energy metals and alloys as the
preponderance ofstacking faults provides opportunities for thin twins to form. This process
is, however, irregular, leading to the formation of bundles of intermixed stacking faults
(intrinsic, extrinsic and other irregular faults) and thin twins, often referred to as "twinjau/ts".
Thus, the critical pressure at which twinning occurs in FCC- metals and alloys appears to be
dependent on stacking fault free energy. This is illustrated in Fig. 9.28 (due to Murr, 1987).

~Eli 4> d
I :lI"'"

:1

--

Figure 9.25. Comparison ofbardness and hardness recovery in shock-loaded NilS Cr1D and
TD-NiCr (the same alloy with 2 vol % Th02 included as a dispersed phase) for a constant
annealing time of I h. The corresponding unshocked microstructures are also shown for
comparison. "Reprinted from Moo, L. E., Metallurgical Effects of Shock and High-Strain-Rale
Loading, in: Blazynski, T. Z. (editor),Materials at High Strain Rates (1987), 1-46, with kind
permission from Chapman & Hall". Graphs after Murr (198Ia).

Twinning in aluminum (where the stacking fault free energy is approximately 160
mJ/m2), while estimated from Fig. 9.28 to occur at about 40 Gpa, should not likely to occur
because ofthe low melting point for aluminum (660°C) and the shock heating which would
occur at that pressure (Fig. 9.27) leading to complete recovery (annealing) at pressures below
the critical twinning pressure. This has yet to be demonstrated experimentally (Murr, 1987).
The data in Fig. 9.28 correspond generally to ambient temperatures or above (Fig. 9.27) and
very low (or zero) strain. Consequently, changing the shock temperature or altering the strain
should have a significant effect on the critical twinning conditions implicit in Fig. 9.28.
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In low-stacking fault free energy alloys such as brass and stainless steel, planar
dislocation arrays and stacking faults at very low peak shock pressures «10 GPA) lead to
increasing densities oftwin-faults at increasing pressures above the critical twinning pressures
(10-20 GPA). In high-stacking fault free energy metals, such as nickel and copper, dislocation
cells densify with increasing peak shock pressure, resulting in a reduction in the average
dislocation cell size d and a saturation ofcell size at the critical twinning pressure. Twins and
twin-faults develop with increasing density and in orientations other than (001) above the
critical twinning pressure. There is, therefore, a microstructural transition in metals like
copper and nickel, e.g., dislocation cells decreasing in size up to the critical twinning pressure
where twins and twin-faults increasing in density occurs. These features are illustrated in
Fig. 9.29 (due to MUff, 1987).
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Figure 9.26. Parametric variations (metallurgical effects and variations of residual mechanical
properties) in shock-loaded metals and alloys "Reprinted from Murr, L. E., Metallurgical
Effects ofShock and High-Strain-Rate Loading, in: Blazynski, T. Z. (editor), Materials at High
Strain Rates (1987), 1-46, with kind permission from Chapman & Hall".
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Figure 9.27. Microstructure-pr hypennap for crystalline shock-loaded metals and alloys.
Arrows indicate parametric increase (1) or decrease (1) "Reprinted from Murr, L. E.,
Metallurgical Effects of Shock and High-Strain-Rate Loading, in: Blazynski, T. Z. (editor),
Materials at High Strain Rates (1987), 1-46, with kind permission from Chapman & Hall".
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metals and alloys. (Critical pressure values are estimated from shock-loading data of Murr
(1981); stacking-fault free energy values are from Murr (1975» "Reprinted from Murr, L. E.,
Metallurgical Effects of Shock and High-Strain-Rate Loading, in: Blazynski, T. Z. (editor),
Materials at High Strain Rates (1987), 1-46, with kind permission from Chapman & Hall".
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Figure 9.29. A comparison ofdislocation cell size changes and twin-fault spacing changes for
shock-loaded and cold-rolled metals and alloys "Reprinted from Murr. L. E., Metallurgical
Effects of Shock and High-Strain-Rate Loading, in: Blazynski, T. Z. (editor), Materials at High
Strain Rates (1987), 1-46, with kind permission from Chapman & Hall".

9.3.5. METALLURGICAL EFFECTS OF SHOCK PULSE DURATION

The pulse duration in shock loading serves to equilibrate defects generated in the shock
front by maintaining the applied peak pressure for some interval of time. As mentioned earlier,
the pulse duration is very short, usually never exceeding 10 ~s. Thus, a pulse duration range
of0.1 to 10 ~s might represent a strain rate ofapproximately 107 to lOS s·\.

Murr (1981a&b) summarized the effects ofpulse duration on the residual structure and
properties of shock-deformed metals and alloys:

While longer pulse durations seem to allow for larger twin or twin-fault volume
fractions in metals and alloys which twin at sufficiently high peak shock pressures, there
is no significant effect on the residual hardness and related mechanical properties.

In high stacking fault free energy metals such as nickel, where dislocation cells are
formed, larger pulse durations do not alter the cell sizes but simply allow the cells to
be more well defined or better developed, Fig. 9.30.
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While twin volume and martensite volume fractions have been observed to increase
with increasing shock pulse duration over the range of about 1 to 10 /.Is (Fig. 9.30), the
corresponding hardness does not change because the deformation gradient wavelength
is not altered significantly.

In low-stacking fault free energy alloys, at very short pulse durations «0.50 /.Is ),
irregular behaviour may occur due to peak pressure instabilities and uncertainties which
result from the use of flyer plates to create a planar shock wave. The result can result
in, for instance, variations in residual hardness (see Murr, 1981).

9.3.6. STRAIN RATE EFFECTS OF UNIAXIAL STRESSES

Most metals and alloys exhibit effects ofvarying strain rate on deformation mechanisms.
Plastic strain rate is commonly expressed, with the inclusion of the microstructure, by the so­
called Orowan expression:

(9.6)

where

b is Burgers vector
Pm is the mobile dislocation density
v is the average dislocation density

and both Pm and vare considered to be functions of the stress o. and plastic strain eP.
9.3.7. STRAIN-RATE SENSITIVITY

Strain-rate sensitivity, at constant strain, is often expressed by

(9.7)

where K is a constant.

Strain-rate sensitivity has been measured experimentally to vary significantly when defined
as a function of flow stress as

p =( ao 1
E alog t E

(9.8)
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Figure 9.30. Examples of the effects of plane-wave shock pulse duration on the residual
properties of metals and alloys. "Reprinted from Murr, L. E., Metallurgical Effects of Shock
and High-Strain-Rate Loading, in: Blazynski, T. Z. (editor), Materials at High Strain Rates
(1987), 1-46, with permission from Chapman & Hall".

It is apparent from (9.8) that with the creation of mobile dislocations, Pm begins to
saturate, or if the average dislocation velocity vbecomes limited in some way, the strain-rate
sensitivity, P., will change noticeably: In this context, P. is found to increase when f: exceeds
roughly 103 S·I (e. g., Campen, 1970 and Lindholm, 1978), but below that range, p either
does not increase or the change is irregular.

Figure 9.31 illustrates some stresslstrainlstrain-rate curves for copper at various strains
and over a range ofstrain-rates, along with similar, smoothed curve data for Nitronic 40 and
type 316 stainless steels based upon some of the experimental results ofFollansbee (1986).

The increased rate sensitivity above 103 S·I (denoted as the high strain rate region) is
quite apparent for copper (Fig. 9.31a), while, for the stainless steels (Fig. 9.31b), the
increased rate sensitivity appears to begin at strain rates as low as 102 S·I.
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Figure. 9.31. Flow stress versus strain rate curves for some face-centered cubic metals and
alloys. (a) Copper measured at various strains; (b) Nitronic 40 and 316L stainless steels at a
constant strain. "Reprinted from MUff, L. E., Metallurgical Effects of Shock and High-Strain­
Rate Loading, in: Blazynski, T. Z. (editor), Materials at High Strain Rates (1987), 1-46, with
kind permission from Chapman & Hall".

Figure 9.31 illustrates the connection between uniaxial shock loading and uniaxial high­
strain rate deformation. The figure shows a comparison of the mechanical threshold stress
(measured at a constant strain of 0.0825) as a function of strain rate for copper from the
experiments ofFollansbee (1986). The estimated strain-rate range for a corresponding shock
loading experiment lOs to 107 5"1 is indicative of the fact that the increased strain-rate
sensitivity of the threshold stress noted at strain rates exceeding - 103 S·I continues into the
shock loading regime.

Measurements of the mechanical threshold stress (Fig. 9.31) coupled with an analysis
of the dislocation-obstacle interactions led Follansbee (1986) to the conclusion that the
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increased strain-rate sensitivity arises from the rate sensitivity of the microstructure evolution
rather than from any change in the involved deformation mechanism. Murr (1987) supported
the latter conclusion by referring to the fact, revealed from examinations of residual
microstructures over a range of strain rates for copper and stainless steel, that the
microstructures may change neither abruptly nor characteristically. In copper, for instance,
changes in dislocation cell size and density are consistent with the mentioned conclusion. In
type 304 stainless steel, the microstructure and its evolution support this conclusion (Murr,
1987).

9.3.8. ADIABATIC SHEAR PHENOMENA

When metals and alloys are deformed at very large strains and at very high strain rates
such as in ballistic impact and penetration, forging and machining, localized shearing can
occur, leading to localized deformation and a localization ofheat generation. At high strain
rates, heat generated in the localized bands provides some self-acceleration to the localization,
and even melting. This concentration of deformation leads to two categories of adiabatic
shear bands; namely, "deformation" and "transformation" bands. The microstructure
associated with these bands includes dynamic re-crystallized microstructures, dislocations,
microtwins and twin-faults as a result of the shear deformation in the localized bands. These
fine and intermixed microstructures lead to very small deformation gradient wavelengths, and
dramatic increases in localized hardness or residual flow stress (Murr, 1987). The reader is
referred, in this context, to the work of Bedford et al. ( 1974), Blicharski and Gorczyca
(1978), Malin and Hatherly (1979), Rogers (1979, 1983), Aghan and Nutting (1980), Murr
et al. (1986), Stelly and Dormeval (1986) and Dormeval (1987).

'Adiabatic shearing' is one aspect of high strain-rate deformation that has received
much attention for some years due to the large number ofapplications in which it appears to
play a significant role. Although this phenomenon was discovered and studied over five
decades ago; e. g. Zener and Holloman (1944) and Zener (1948), the phenomenon was not
considered for a long time, and it was only in early 1970s that researchers began to take a
new interest in its study.
In metals, it has been determined that at room temperature about 90% of the work of
deformation energy goes into heat. Adiabatic shearing is a particular situation in which the
heat generated in localized bands cannot be dissipated because of the high level of strain rate
in conjunction with the thermal properties of the material. An idealized adiabatic deformation
does not exist, some part of the heat being always lost to the surrounding metal and the
environment. However, the term 'adiabatic' is taken to refer to the fact that a large portion
of the heat is retained in the band.

"Shear bands" form as a result of a thermo-mechanical instability due to the presence
ofa local inhomogeneity, inducing local deformation and heating. If the thermal properties
of the material are not sufficient to conduct the generated heat away, the deformation
becomes unstable and is localized on surfaces of very small thickness (- 10 to 50 microns).
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On microscopic observation, these surfaces appear as narrow bands in which cracks can
propagate (Fig. 9.32), inducing catastrophic failure of the material.

Adiabatic shearing is involved in a large number of processes where high strain rates
occur, e.g., impact, penetration, fragmentation, machining, metal forming.

(b)

Figure 9.32. Evidence ofadiabatic shear bands in TA6V titanium alloy: (a) fragment from an
explosively expanded cylinder; (b) chip (machine-turned). "Reprinted from Dormeval, R., The
Adiabatic Shear Phenomenon, in: Blazynski, T. Z. (editor), Materials at High Strain Rates
(1987),47-70, with kind permission from Chapman & Hall".

It is traditional to distinguish two types of adiabatic shear band:

Deformed bands. They are characterized by a very high shear strain (up to 100) in a
very thin zone ofdeformation. Inside the band, the grains are highly distorted, but there
is no evidence of a change in the microstructure of the material.

Transformed bands. In these bands, a crystallographic phase change occurs. In steels,
for instance, they are often called 'white bands', Fig. 9.32, as their appearance after
itching is quite different from that ofthe matrix.
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CHAPTER 10

PLASTIC INSTABILITY AND LOCALIZATION EFFECTS

10.1. Introduction

A decrease in stifthess due to geometrical change and/or material softening caused by
deformation is responsible for the occurrence of instability phenomena in engineering
materials within the plastic range; i.e., beyond the yield point. Such phenomena manifest
themselves in various ways; e.g., buckling, bulging, necking and shear banding. Once such
instabilities are started, they tend to persist and the stiffness of the specific cross-sectional
area ofthe specimen decreases; therefore deformation intensifies locally and eventually leads
to final collapse and/or failure.

Because the occurrence ofmuch instabilities is an important precursor to collapse or
failure, computational prediction of the onset and of the augmentation of these instabilities
is essential and indispensable in understanding the ultimate strength of the structures and
materials, and in predicting and improving plastic solids formability.

The onset ofplastic instability is likely to be related to the point where "bifurcation"
from the fundamental path becomes possible

The point of bifurcation maybe obtained by applying "Hill's bifurcation theorem
(1958)" for "associative materials" under "conservative loading"; Hill (1958).

A more elaborate theorem must be employed for "non associative" and "nonlinear"
materials; see, e.g., Tomita (1994).

10.1. Onset of Shear Banding

The onset of shear banding can be analysed within the framework given by Hill
(1962a), and Rice (1976).

The necessary conditions for the earliest possible localization of instabilities may be
determined by the linear instability theory (Leroy and Ortiz, 1989).

Under specific conditions, post bifurcation behaviour, immediately after the
bifurcation point, may be expressed by the sum of the fundamental solution at the bifurcation

52
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point and a suitably
normalized bifurcation mode (Hutchinson 1973a).

Regardless of the problem associated with the material characteristics and loading
conditions, the so-called "Growth of Plastic Instability" may be predicted with proper
computational conditions.

10.2.1. BASIC EQUATIONS

Virtual work principle:

In this section, the governing equations for an
elastic-plastic boundary value problem are given
within the context of large-strain theory. An
updated Lagrangian formulation of the field and
constitutive equations is employed

v,s

u

All equibllrium stlte of the bodyConsider an equilibrium state for a body,
with volume V and surface S, subjected to a
velocity constraint on Sv and traction on the remaining part of S, i.e., S,. Each particle is
labelled by a set ofcurvilinear coordinates ~ (see Appendix D). The latter are embedded in
the body in the current state and serve as independent variables. In the deformed
configuration, the covariant component ofmetric tensor are denoted by Gij. The weak form
ofthe equation governing the rate ofstress and traction yields the virtual work principle (Hill,
1958, Seguchi et at, 1971, Kitagawa et al., 1972).

where:

f (})j + oij ui , t) ~ uij d V =f t i ~ Uj d S

v ~

(10.1)

I;ij

(.),t

is the Kirchhoft stress (Chapter2). It is identical to Cauchy stress oij in the
current configuration.
is the nominal traction rate.
is the virtual velocity satisfying the homogeneous boundary condition over
surface
(an over dot) denotes a material derivative.
denotes the covariant derivative with respect to the current coordinates
(Appendix A).

For the body with configuration dependent loading, the nominal traction rate pi in
(10.1) is given as
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traction rate
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T - cy + CS\
Configuration
dependent traction
rate

(10.2)

FollowingHill (l962a), Sewell (1967) and Dubey (1970), the confii'Jration-dependent
traction rate t uimay be expressed as a function in the velocity uj and velocity gradient \).Ij as

t j = Aji U. + tIn:\ Rijkl U
u J 'lJI f,k

the surface unit
Dormal

(10.3)

The tensors N i and Riikl are independent of the velocity. The first term in (10.3) may
represent the traction induced by elastic formulation and the second term may represent the
follower force; see, e.g., Timoshenko and Gere (1961). Under certain conditions, the
configuration dependent traction rate may have potential and the variational principle can be
established (Tomita 1994).

For a body with pressure p on the portion of the surface S" t o
i and tuiare given by

. i ..
T = _po n. G'J
o J

t i = n. Rjikt \)
u J I.k

(10.4)

Meanwhile, the weak form ofthe energy balance equation for the same body subjected to heat
flux q = -OJ Cb = Q on Sq and temperature constraint on ST can be established by multiplying
the local form of the energy balance equation by ()T which satisfies the homogeneous
boundary condition on ST as expressed by
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s ecific heat Thermal conductivity
P I tensor

f 6TV 0tdV+fH,~T.;dV
v / v

mass density =ft>T@dV+ ft>TQdS
v I Sq

fraction of irreversible
work
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(10.5)

In (10.5), the fraction of invertible work w P =o'ij Oirwhich is converted to heat is ex, where
ex is in the range of 0.85 - 0.95 for many metals; Taylor and Quinney (1934). Meantime, the
specific form of heat flux Q depends on the respective boundary conditions.

Constitutive Equations

Predictions of instability behaviour strongly
depend on material response. OJ

In elastic-plastic material response, the plastic part Ok~ of
the strain rate Ok" Ok' =(uk' + u, k) / 2 is usually
specified through various classes of constitutive
equations.

Elastic material response takes the form of a
linear relationship between the elastic strain rate,
Ok~ =Ok' - Ok~' ,and a suitable objective stress rate as

An elastic constitutive tensor

v,s

'-- .
J.

(10.6)

Meantime, the constitutive equation for elastic-plastic response can be expressed as
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Eij = Lijkl D
kl (10.7)

where Lijkl is an elastic-plastic constitutive tensor which depends on the current stress, the
deformation history and the choice of an objective stress rate. Reference in this context is
made to Dafalias (1983), Loret (1983), and Dafalias and Aifantis (1990), among others.

For the material obeying the flow rule, plastic strain rate D j; can be expressed by

D..P =_IrmEmn@
I) h "'.
/0) directions of plastic strain
// normal to components

the hardening modulus the yield surface

(10.8)

For O;j = mjj , the constitutive equations derived for associated flow rule are recovered. The
constitutive equations following "J1 flow theory" (Hill 1958, Hutchinson, 1973b), "J1

Kinematic hardening theory" (Tvergaard 1978) and many anisotropic theories (see, e.g.,
Neale 1980, Tomita 1994) fall into the special case of eqn. (10.8).

Rudnicki and Rice (1975) expressed in their model nij and mij by the following relationship

n· = '3 0'. I 2 '0 + B 0.. / 3
I) V J I) I)

and

m·· = '30:. / 2 '0 + M 0.. / 3I) VJ I) I) (10.9)

Specific values ofBand M can be determined, for instance, by a Gurson-type yield
function (Gurson 1977, Tvergaard, 1981).

A kinematic hardening version of the material was suggested by Mear and
Hutchinson (1985) and Tvergaard (1987). Tomita (1994) extended the model to account for
the change in elasticity modulus due to the void volume fraction.

The deformation type constitutive equation, originally proposed by Budiansky (1959)
has been generalized to account for finite strain (St6ren and Rice, 1975, Needleman and
Tvergaard, 1977, Hutchinson and Neale, 1973) and anisotropy (Tomita and Shindo, 1985).
The plastic strain constitutive equation is
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a new harderning modulus
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(10.10)

The constitutive eqn. (10.10) is valid for the defonnation satisfying the total loading
condition (Budiansky 1959).

For the strongly non-proportional stress histories, Christofersen and Hutchinson
(1979) proposed the "corner theory" in which an angular measure 4> of the stress rate
direction with respect to the comer direction of the yield surface is defined. The
instantaneous moduli for nearly proportional loading, 4> s 4>0' are chosen equal to those of
defonnation theory, and for increasing derivation from proportional loading 4>0 s 4> s 4>c'
the moduli stiffen monotonously until they coincide with the linear elastic moduli for elastic
defonnation or unloading.

The plastic strain rate constitutive equation can be expressed by

(10.11)

A transition function; it is
unity throughout the total
loading range, O~dh;60'
and is identically zero for
6 e s6s1t. Here, f(6)
decreases monotonically
from unity to zero as 6
increases form 60 to 6 e•

Plastic compliance tensor

The Bauschinger effect (Tomita et al., 1986) and anisotropy (Tomita et Shindo 1990) have
been concretely introduced in the constitutive eqn. (10.11); see, also, Gotoh (1985).
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10.3. Strain-Rate and Temperature Effeds

Engineering materials generally do possess strain rate and temperature sensitivities
to various extents. These have an important effect on instability behaviour. Here we restrict
our attention to an isotropic material and assume that the relation of representative stress 0,
representative viscoplastic strain eU

, representative viscoplastic strain rate ~v and absolute
temperature T has the form

or

(10.12)

Tomita (1994) advanced that the constitutive equation for plastic strain rate, eqn. (10.10)
may be modified to include the effect of strain rate and temperature sensitivity. The
viscoplastic strain rate DJ is proposed to be given by

_ 0ij
n.. ----,

I) ..j2i3 0
(10.13)

In (2.13), to> accounts for the degree of non-coaxiality of the viscoplastic strain rate
to the stress tensor (Tomita and Shindo 1985), and pstands for the temperature sensitivity
of the flow stress. Naturally the situation to> - 0 provides a generalized constitutive eqn.
following the "JzJlow theory"; Tomita (1994).

When the total strain rate OJ" is assumed to be the sum of an elastic strain rate Oi~'

accounting for the temperature deperident elastic response, and a viscoplastic strain rate Oij ,
Eqn. (10.13), the constitutive equation for stress rate Ej " strain rate 0kl and the rate of
charge in temps t is then established (Tomita et ai, 1990 ).

A concrete form of (10.12) which is often used has the form
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(10.14)

where 00 (T) is temperature dependent stress characterizing the thermal softening affect, and
nand m are strain and strain rate sensitivity components, respectively. Here l). andty are
reference strain and strain rate, respectively.

According to the experimental observation of the response of the material under a
multi-axial stress condition and high rate ofdeformation, the constitutive equation is quite
complicated, and the strain- rate sensitivity exponent m, generally depends on the strain rate
applied and increases as the deformation rate increases.

Furthermore, for specific materials, an abrupt increase in the strain rate during the
deformation process causes a substantial increase/decrease in flow stress as seen in
steel/copper (Campbell et aI. 1977, Mimura and Tomita, 1991, Tomita and Higo 1993).

Such substantial increase/decrease in the flow stress will be referred to as "positive"
and "negative" strain-rate ruston' dependence. respectively. Such an effect may be accounted
for (see Tomita, 1994) by

J - (1+-';]\xl" A (8.;)" In I' :;
(10.15)

In (10.15), A and B account fOLthe material strain rate and strain history dependence of the
flow stress, respectively, and £~ and tV are viscoplastic representative strain and its rate
before abrupt charge in strain rate, respebively (Tomita and Higo, 1993).

In order to avoid numerical instability and maintain the required accuracy, suitable
integration schemes for the rate-type constitutive equation must be employed. In this context,
for the temperature-independent case, in the Euler method, the size and the time steps must
be determined such that the stress exactly satisfies the yield condition in the course of
yielding (Yamada et al 1968), and the magnitude of the increment of the displacement as
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well as the rotation is restricted to avoid numerical instability (Nagtegaarl and Jong, 1981),

These methods have been extended to the strain rate and temperature-dependent
constitutive equations (Peirce et al. 1984, Rashid and Nemat-Nasser 1992, and Nemat-Nasser
and Li, 1992).

Iterative methods such as the radial return method (Krieg and Krieg, 1977) and mean
normal method (Rice and Tracey 1973) have been developed and extended to different types
ofmaterials.

Return mapping algorithms capable of accommodating the general yield condition
and arbitrary flow hardening rules; nonlinear elastic response for general rate-independent
and rate-dependent behaviour (Ortiz and Simo, 1986); versatile integration algorithms
including their application to the treatment of nonsmooth yield surfaces (de Borst, 1987,
Simo et al 1988, Runesson et al 1988), their accuracy (Ortiz and Popov 1985, and Ortiz and
Simo 1986) and consistent tangent operators (Simo and Taylor 1985, Runessonet al. 1986,
Simo et at. 1988) have been extensively investigated to obtain a converged and accurate
solution.

Runneson et at. (1988) also provides an excellent brief review of the development of
integration schemes. Furthermore, the treatment of large increments of strain (Hughes and
Winget, 1980, Pierce et ai, 1984, Simo and Ortiz, 1985, Runesson et ai, 1986, Rashid and
Nemat Nasser 1992, Nemat-Nasser and Li, 1992) is indispensable for large strain and
displacement analysis.

As long as the deformation is sufficiently small, the elastic-plastic boundary value
problem has a unique solution which is referred to as the fundamental solution,

When the deformation reaches a certain value, bifurcation from the fundamental
solution becomes possible. The point of bifurcation can be found throu2h the use of Hi11' s
2eneral theory of bifurcation and uniQuesness (Hill, 1958) for elastic-plastic solids. This
theory states that the solution is not unique when a nontrivial solution can be found for the
eigenvalue problem given by the following variational equation

Bifurcation functional
\ 61=0

fT\ = JO::'ii +oijv.'.dV\V I,J

v

-J t'i v.' dSv I

Sl

(10.16)
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Bifurcation condition (10.16) is valid only when the material follows an associative
flow law, whereby the superscripted asterisk denotes the difference between the fimdamental
solutions and the second one. The surface integral in (10.16) arises from the configuration
dependence of the loading. Meantime stress rate E·ij is related to strain rateDk', by 1

/"

Is assumed to be symmetric
when the material follows an
associative flow law.

(10.17)

Is assumed to be a constitutive
tensor for a linear comparison
solid, in which the plastic parrt of
the constitutive tensor is
employed for the current plastic
zone. (see Tomita, I994).

When the bifurcation functional I (Eqn.10.16) is approximated in terms of finite
elements, one can arrive at an approximate fimctional of the following form

(10.18)

where {o' } denotes the values of vi' at the nodal points. The stationary condition of the
approximate fimctional with respect to {o'} yields the following homogeneous algebraic
equation

{K} {o'}=O

When the equation (10.19) has a nontrivial solution, bifurcation may occur.

(10.19)

At every computational step, the vanishing point of the determinant of the coefficient
matrix of (I 0.19), i.e.

det [K] = 0 (10.20)

is checked. Usually, when the sign of the det [K] changes at a specific incremental step, an
iterative method is used to determine the accurate vanishing point of the determinant.

The bifurcation mode is obtained as the eigen-mode of the homogeneous equation
UQJ..2l.
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In this context, reference is made to Kitagawa et al (1980, 1982), de Borst (1989),
Bardet (1990), and Leroy and Chapuis (1991). The special case where two or more
eigenvalues of [K] may simultaneously change sign, has been treated by de Borst (1989).

With reference to condition (10.20), at every computational step of the analysis, the
vanishing ofthe determinant of the coefficient matrix is checked against several modes. The
first bifurcation point is referred to as the "Critical Bifurcation Point', and its mode is
referred as the "Critical Bifurcation Mode"

10.4. Bifurcation Analysis for Specific Constitutive Equations

When the material follows the nonassociative flow law, the bifurcation condition
(10.16) becomes~ because of the nonsymmetry of the tensor Lijkl in (10.17).

EXAMPLE:

I. Linear Constitutive Equation

Raniecki (1979) and Raniecki and Brunhs (1981) introduced~ comparison solids
to determine the bifurcation point for the material obeying the non-asssociative flow law.

The first comparison-solid is from the "one-parameterfamily" of "linear comparison
solids" with the following strain rate constitutive form

i .._.~ _

D ijk! - D ijkf _ 1 ij k!
- E -p q

G

P i j = qij = D ijk ! n + ~ D ijk ! m
E k!" E k!

ijk'G =4 ~ ( H + mij DE nk!)

]

(10.21)

where H is the hardening modulus and mij and I\j are the directions of plastic strain rate and
the normal to the yield surface, respectively. Here ~ is a positive parameter.

The solid obeying the constitutive eqn. (10.21) is referred to as an "Alternative
Comparison Solid". Raniecki and Brunhs (1981) proved that if uniqueness is certain for
these comparison solids, then bifurcation is precluded for the underlying materials. The
bifurcation point for these comparison solids provides the lower bound to a solid with the
"non-associative flow law". However, the still undetermined positive parameter ~ in the
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constitutive tensor is a function of the particle position and should be optimized to give the
closest lower bound. For the homogeneous fundamental deformation, the optimal lower
bound can be determined as (e.g., Raniecki, 1979)

C
- -...--..-.--.-.--....-..---------.--.--.-.-..-.--.----J..

ijkl
~ = m ij DE mk/

Dmnrsnnm E ~s

(10.22)

The lower bound to the bifurcation point is not ordinarily the bifurcation point of the
underlying material. Consequently, the search for the genuine bifurcation state is replaced
by a search for upper and lower bounds:

i) the lower bound: Here the occurrence ofbifurcation is checked against the vanishing
point of the ~-value determinant matrix, det [K (~)], expressed in (10.20), at every
step of the analysing of the fundamental solution. With note of the positiveness of
these determinants up to the bifurcation point, the maximization of the determinant
with respect to the positive parameter ~ at each step of fundamental analysis
substantially improves the accuracy of the lower bond.

ii) the upper bound: Here the concept of a second-comparison solid, a "nonloading
solid" is introduced and shown with the nonassociative flow law such that the first
eigenstate of such a comparison solid identifies an upper bound to the bifurcation
point of the underlying solid.

II. Nonlinear Constitutive Equation

For a material obeying a nonlinear constitutive equation such as Christoffersen and
Hutchinson's corner theory (1979), the bifurcation theory should be generalized
(Triantafyllidis 1985).

At same stage ofdeformation, stress oij, displacement u; and any state variables in the
constitutive equation, as well as their corresponding rates, are known and unique. Then, the
following bifurcation functional, quadratic in Vi· , and bifurcation condition for displacement
prescribed loading are defined as (see Tomita, 1994)

() I =0
1= f (L·ij + oij v~i
v

v~.) A V
I.J (10.23)
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where L·ij is related toOk" by

L·ij =L ijk' Ok" (10.24)

In (10.24), Lijkl is the constitutive moduli tensor of an actual solid in the fundamental state.

The bifurcation functional (10.23) has been used to determine a lower bound for the
first bifurcation. On the other hand, Tvergaard (1982) assumed the uniqueness of stress aU,
displacement u j and any state variable in the constitutive equation and employed the
bifurcation functional (10.16) with the actual constitutive moduli tensor in the fundamental
state to obtain the upper bound for the critical load.

10.5. Post Bifurcation Analysis

The solution of the boundary value problem at the bifurcation point can be expressed
by the sum of the fundamental solution and a suitably normalized eigen mode for the
variational equation.

The specific amplitude of the eigen mode is determined so that loading occurs
everywhere in the current plastic zone, except at one point where neutral loading takes place
(Hutchinson, 1973a). This solution reveals the postbifurcation behaviour just after the
bifurcation point.

Due to the highly nonlinear nature of the postbifurcation behaviour, numerical
analysis appears indispensable, e.g., by employing the virtual work principle with finite
element approximation.

When the materials obeys the constitutive equation derived by the nonassociative
flow law or expressed by the nonlinear relation between the stress and strain rates, the
bifurcation point obtained does not necessary provide the real bifurcation point. Thus, the
post-bifurcation behaviour must be traced approximately by employing bodies with initial
imperfections, through, again, the virtual work principle.

The proper magnitude of imperfection which depends on the problems and the
significant features of the computational facility, must be introduced to simulate
approximate bifurcation and post bifurcation behaviour (Tomita et al. 1984).
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10.6. Plastic Instabilities in Specific Problems

I0.6.1. INSTABILITY BEHAVIOUR OF CIRCULAR TUBES

The problem of predicting the deformation behaviour of an elastic-plastic tube
subjected to a combined load is an important one in mechanics and in engineering
applications. Thus, significant research effort has been undertaken on this topic so far.

Following Tomita (1994), the presentation below concentrates on axisymmetric and
non-axisymmetric bifurcation and post-bifurcation behaviour ofelasto-plastic circular tubes
under lateral pressure and axial load.

For axially plane strain problems, the bifurcation functional has the form (Chu 1979,
Tomita et aI., 1981).

•
Im=1tJ ~TBm~mrdr-p.1ta2(~TCm~m\

m m Ir:.
b

+ Pb 1t b2(~T Cm~m)m r:b

( /\ /\ 1/\ Vrm V6m /\ /\
V = ---v Vm r r m.r 6m.r

(10.25)

where P. and Pb are internal and external pressure, respectively. Bmand Cn are matrices
depending on the physical components of the constitutive tensor and a bifurcation mode m.

The bifurcation functional (10.25) and its slightly extended version have been
extensively employed in the prediction of the onset ofbifurcation for internal pressure (Chu
1979, Tomitaet al1981, Reddy 1982) and external pressure (Tomita and Shindo 1982) under
plane strain conditions, and for the combined loading condition of internal pressure and axial
force (see Tomita, 1994). These are considered frequent collapse problems for design
purposes.

On the other hand, although the number of investigations is rather restricted, the
initial to intermediate post-bifurcation behaviour (Tomita et al 1981, Tomita and Shindo
1982) and localization of the deformation accompanied by shear bands (Larrson et ai. 1982)
have been clarified. However, these studies are restricted to the deformation under axially
plane strain conditions (Tomita, 1994)..

Tomita et ai. (1984, 1986) investigated the loading path-dependent bifurcation and
post-bifurcation behaviour of tubes subjected to axial tension and internal pressure, and the
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localization behaviour of tubes under axial load and external pressure.

Fig. 10.1 shows a few results obtained by Tomita et al. (1986). The positive axial
loads substantially lower the maximum pressure, however, these effects diminish as
deformation proceeds. The Bauschinger effect is quite noticeable for a tube with positive
axial load. In Fig. 10.1b, the critical displacements at which the stress system first satisfies
Hill and Hutchinson's surface instability and shear band formation condition (Hill and
Hutchinson 1975) are shown. The influence ofaxial bond, the Bauschinger effect and comer
formation, including the comer angle, and the mobility of the yield surface on the formation
ofuneveness and shear band, and their growth were investigated (Tomita, 1994).
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Figure 10. I. Bifurcation and postbifurcation behaviour of thick-walled tubes subjected to
external pressure p and axial force L. (a) Computational model and notation. (b) Pressure
p versus displacement u relation. (c) Axial strain £. versus displacement u relation. m:
parameter defining partial translation of yield surface. m = 0: no rotation, Oy: initial yield
stress. "Reprinted from Int. J. Mech. Sci. 28 (S), Tomita, Y., Shindo, A., Kim, Y. S. and
Michiura, A., Deformation behaviour ofelastic-plastic tubes under external pressure and
axial load, pp. 263-74, 1986, with permission from Elsevier Science".
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10.7. Instability Propagation (Metallic and Polymeric Materials)

For many.dlli<tik materials, once inhomogeneous deformation has started, further
flow localization is accompanied by an increase in deformation, which in turn leads to final
fracture.

On the other hand, the necking ofmany polymers initially develops in the specimen
in a manner similar to that observed for ductile materials, and this subsequently propagates
along the specimen under an essentially steady-state condition (Hutchinson and Neale 1983).
In case of polymers, however, the "re-stiffening effect", which is observation in the high­
strain region in polymer and is generally caused by the alignment of material chains,
randomly oriented in the undeformed state, is seen to be responsible for neck development
and propagation.

The mechanical aspects of instability propagation in polymeric material have recently
received much attention:

Hutchinson and Neale (1983) and Chater and Hutchinson (1984) investigated the
neck propagation of tension blocks, bulge propagation in long cylindrical balloons
and the buckle propagation of tubes under lateral pressure in terms of simple one­
dimensional anlaysis or approximate steady-state analysis.

Fig. 10.2 shows the uniaxial stress-strain relation, corresponding elongation curves
and deformed shape of the specimens (Tomita and Hayashi, 1991& 1993). After the
maximum load point, necking starts and it develops until the load attains the load
minimum. Then it propagates with an almost constant load. The propagation may
not appear when the strain at the re-stiffening point is smaller than strain at the
maximum load point.

Except under conditions of very slow deformation, the propagation behaviour of
instability manifests different features associated with frictional heating of the
polymer undergoing large deformation.

In a subsequent study, the effects of strain rate sensitivity (Tugcu and Neale,
1987&1988) and the temperature dependency (Tugcu and Neale, 1990, Tugcu et ai, 1991,
and Tomita and Hayashi, 1991&1993) on the neck propagation behaviour have been
investigated with a constitutive equation similar to (10.13).

Figure 10.3 shows the thermo-e1astoviscoplastic neck propagation behaviour. In this
Figure, U is the normalized end displacement rate and AD stands for a locally adiabatic
process, otherwise thermocoupled analysis is performed.
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Figure 10.2. Defonnation behaviour ofpolymeric material under tension. (a) Uniaxial true
stress a-natural strain e relatioru; for different temperatures, u: end displacement, 2L: initial
length of the specimen. (b) Load 0- elongation ulL curves under quasi-static deformation
rate. (c) Deformed specimen profiles at ulL = 0.8 for quasi-static and isothermal
deformation. "Reprinted from Int. J. Solids Structures 30(2), Tomita, Y., and Hayashi,
K., Thermo-elasto-viscoplastic deformation of polymeric bars under tension, pp. 22S-35,
1993, with permission from Elsevier Science". See, also Tomita and Hayashi (1991).
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As shown in Figure 10.3, at a low rate ofdeformation, the stabilization effect by re­
stiffening overcomes the destabilization effect due to thermal softening, and the neck
propagates along the tensile direction with a heat source which can be seen in the temperature
distribution along the tensile axis.

Thus, the deformation-induced heating and its conduction strongly affect the neck
propagation behaviour for a relatively low rate ofdeformation.

As a result, predictions based on steady-state analysis with the adiabatic assumption
will provide an improper estimation because the deformation-induced heating tends to cause
nonsteady-state deformation, which increases as the material strain rate sensitivity increases
(Tomita and Hayashi, 1991&1993).
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Figure 10.3. Thernt<H:lasto-viscoplastic neck propagation behaviour. (a) Defonned profiles
forditferent strain rates of2xlO'sU, AD: with assumption of locally adiabatic process. (b)
Temperature distribution along tension axis y. u: end displacement, 2L: initial length,
Tj : initial temperature, 296 OK, m: strain-rate sensitivity exponent. "Reprinted from Int.
J. Solids Structures 30(2), Tomita, Y., and Hayashi, K., Thenno-elasto-viscoplastic
deformation of polymeric bars under tension, pp. 225-35, 1993, with permission from
Elsevier Science". See, also Tomita and Hayashi (1991).
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Furthennore, anisotropy caused by microscopic mechanisms of the molecular chains
and the distribution oftheir orientation due to excessive defonnation is quite important:

Boyce et al (1988) developed a three-dimensional constitutive model describing the
inelastic response, including the strain rate, temperature and strain softeninglhardening of
glassy polymers, based on the micromolecular structures of materials and corresponding
micromechanisms of plastic response.

Boyce and Arruda (1990) verified that the constitutive equation can predict the major
aspects of the material well.

Since the identification of the constitution response is quite difficult due to the
complicated nature ofthe defonnation behaviour ofpolymeric material, including the special
attention to experimental methods (G'Sell and Jonas, 1979), further developments in the
hybrid strategy in cooperating precise experiments and computational simulation (Tomita
and Hayashi, 1991) are expected to yield a better understanding of the actual response of the
polymeric material.

10.8. Flow Localization ofThermo-Elasto-Viscoplastic Solids

Localization ofplastic flow into shear bands has been observed in various materials
and is recognized to be a very important precursor to failure.

10.8.1. RATE-INDEPENDENT MATERIALS

Intensive studies have been performed on different classes of rate independent
materials (e.g., Rice 1976 and Needleman and Rice, 1978 for development of localization
and have clarified the critical dependence of the localization conditions and the localization
processes on the constitutive description.

10.8.2 RATE-DEPENDENT MATERIALS

The real strain-rate-dependent flow localization manifests itself as different features
depending on the rate of defonnation, with the understanding that, thermocoupled analysis
is inevitable (Chung and Wagoner, 1986, and Tomita et aI, 1990)

Thermo-coupled flow localization analyses without the inertial effect have been
carried out by Lemonds and Needleman (1986 a, b), Kim and Anand (1987), Nemat-Nasser
(1988), Nemat-Nasser et al (1989), Tomita et al (1990), Tomita and Nakao (1991, 1992) and
Zbib and Jubran (1992) for plane strain tension.

Kim and Anand (1987), Nemat-Nasser (1988), Nemat-Nasser et al (1989) and Zbib
and Jubran (1992) assumed the adiabatic process which represents an upper bound on the
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temperature, whereas Lemonds and Needleman (1986a,b), Tomita et aI. (1990) and Tomita
and Nakao (1991,1992) accounted for the heat conduction. Plane strain quadrilateral
elements with hourglass control (Nemat-Nasser et al 1989, Zbib and Jubran 1992) and
crossed trangular elements (Lemonds and Needleman, 1986 a, Tomita et aI, 1990, and
Tomita and Nakao, 1991, 1992) are employed. An intensification of shear localization has
been observed for large specimens, and the adiabatic assemption may provide suitable
infonnation on the specific order of the strain rate, which increases as the specimen size
decreases (Tomita et aI, 1990). Further, it has been clarified that the localization of the
defonnation is delayed by the strain-rate effect, strain-gradient dependent of the yield stress,
as seen in equation (10.26) below

(10.26)

where (J is the local flow stress.

The results also illustrate that the interactions of material properties and thennal
softening and the growth ofvoids are two competing and interacting softening mechanisms
in porous materials.

Dynamic flow localization analyses have been carried out by Needleman (1989) and
Batra and Liu (1989, 1990) for plane strain compression. Needleman (1989) employed the
softening constitutive equation as a simple model for a thennally softening solid. Then the
problem is treated from a purely mechanical point of view with initial homogeneity of the
flow stress near the centre of the block.

Batra and Liu (1989, 1990) investigated a similar problem by introducing a
temperature bump at the center of the block obeying thennally softening viscoplastic solids.
Thennocoupled analyses have been perfonned. The results are in qualitative agreement with
those ofNeedleman (1989). Except for a significant delay in shear band development due
to the inertial effect, the main features ofshear band development are the same as under the
quasi-static loading condition.

Wright and Walter (1987) studied the problem of dynamic simple shear of a finite
slab of incompressible material and showed that in the late localization stages, the
conductivity and strain rate set the width of the shear band.

Batra and Zhang (1990) and Batra and Zhu (1991) investigated shear band
development in a viscoplastic cylinder and bimetallic body containing two voids under
dynamic loading.

Figure 10.3 shows the results of the plane strain tension blocks under the average
defonnation rate UIL =2000/s and with both ends free and~ under conditions without
and 1Yi1h inertial force (Tomita and Higo 1993). A locally adiabatic condition is assumed.
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Figure JO. 4. Representative strain distribution in plane strain blocks, L=24 mm, m=O.0 I.
(a) Without inertial effect. (b) With inertial effect. "Reprinted from Int. J. Mech. Sci.
35(12). Tomita, Y, and Higo. T., Plane-strain flow localization in tension and compression
ofthermo-elasto-viscoplastic blocks Wlder high rates ofdeformation, pp. 985·94, 1993, with
permission from Elsevier Science".

With reference to Fig. 10.4, in the case without inertial force (a), regardless of the boundary
condition, localization predominantly develops near the center of the specimen, whereas
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irregular flow localization is observed in the case with inertial force (b). The propagation of
the dynamic force and boundary constraints play an important role in the onset and
development of flow localization.

Needleman and Ortiz (1991) gives a complete mechanistic explanation concerning the
interaction between shear bands, free surfaces and interfaces.
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Figure 10.5. Growth ofundulation for dynamic compression ofblocks near the stress-free
surface. "Reprinted from Int. J. Mech. Sci. 35(12), Tomita, Y. and Higo, T., Plane-strain
flow localization in tension and compression of lhenno-elasto-viscoplastic blocks under
high rates ofdefonnation, pp. 985-94, 1993, with pennission from Elsevier Science".

Fig. 10.5 (Tomita and Higo, 1993) shows the compression of the strip under a wide
range of deformation rates iJ = iJ / (@o £y) = 102 - 106 :
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A defonnation process with heat conduction (CO) and a locally adiabatic condition
(AD) have been assumed for a low and high rates of defonnation, respectively (see,
also Tomita et at. 1993).

Fig. 10.4 (left) shows the evolution of the undulation of the stress force surface.

Fig. 10.4 (right) depicts the representative strain distribution at a specific stage of
compression e. = - 0.25.

The general feature of the flow localization is essentially the same as that seen in the
quasi-static case (Tvergaard, 1982, Kitagawa and Matsushita, 1987).

The surface undulation abruptly starts to increase at a specific point (which can be
approximately obtained by linear perturbation analysis), and leads to the development
of a shear band connecting the highly strained regions beneath the highly strained
region in a zigzag faction.

At a low rate of deformation, thermal softening is substantially suppressed by the
heat conduction and causes significant delay in the evolution of the undulation and
strain distribution.

Competing effects of thennal softening and inertia are observed in the evolution of
undulation and representative strain at a relatively high rate of deformation

At very high rates of strain, over IlY S·I, the inertial effect overcomes the thermal
softening and causes significant delay in flow localization and greater thickness of the shear
localization zone.

10.9. Effect of Material Rate History

Fig. 10.6 (Tomita and Higo 1993) shows the effect of material strain rate history
dependence on flow localization behaviour. Five different types of computations with the
end velocity shown in Fig. 10.6a have been perfonned:

The difference observed between cases I and II is attributed to the dynamic effect.
As discussed above, the inertial force again stabilizes the defonnation.

Comparison ofcases III and IV clarifies the effect of the material strain-rate history
dependence on the flow localization.

The comparison for cases II and III clarifies that the dynamic deformation
subsequently applied to the quasi-static defonnation stabilizes the deformation.
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Since the stabilization effect of strain rate history dependence suppresses the
development of flow localization, the ductility of the material is clearly increased by
subsequent dynamic loading after pre-straining. The efficiency of increasing the ductility
depends on the magnitude of pre-straining, as seen in case V.

10.10. Three-Dimensional Effects

The three dimensional aspects oflocalized deformation without inertial effect (Leroy
and Ortiz 1990; Zbib and Jubran (1992) have been investigated:

Zbib and Jubran (1992) assumed adiabatic deformation and clarified the smooth
transition ofplane stress to plane strain deformation by employing very thin to thick
specimens.

Fig. 10.7 (Zbib and Jubran, 1992) shows the deformed meshes with shear bands.
A very strong three-dimensional geometric effect on the shear banding is observed.
The orientation of the shear bands are 35.25 0 and 45 0 , respectively, and they are
consistent with the theoretical predictions. Again, a softening mechanism and an
initial imperfection are among the many cause of shear banding. The multiaxial
effect stabilizes the deformation and yields a delay in localization (Zbib and Jubran
1992).

10.lI. Problems

I. Explain briefly the following terms:

- Associative material
- Conservative loading
- Bifurcation state
- Critical bifurcation point vs. Critical bifurcation point
- Upper and lower bounds ofa bifurcation state.

2. Comment briefly on the aim of"Hill's b!furcation theorem".

3. What is configuration-dependent loading?

4. What constitute uniqueness criteria in mechanics of solids?

5. What are conservative and non-conservative problems?

6. Discuss briefly the three-dimensional effect on shear banding in a metallic material.
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Figure 10.6. (a) Computational model for compression of blocks. Cases I, II: Constant
velocity and without and with inertial effect, respectively. UI = 0, TJ = 0, u21L=10

4
S·I. Cases

III, IV and V: with velocity jump at t = TJ and flow stresses exhibiting negative dependence,
no dependence and positive dependence on strain rate history, respectively. ullL = 0.002
S·I , U2 IL = 10 4 S·I • Case VI: Case V with velocity jump at t = 2T, , L = 1.0 mm. (b)
Representative strain distribution at different stages of defonnation during the dynamic
compression of plane-strain blocks. Case I-VI correspond to those in (a). "Reprinted from
Int. J. Mech. Sci. 35(12), Tomita, Y. and Higo, T., Plane-strain flow localization in tension
and compression ofthenno-elasto-viscoplastic blocks under high rates of defonnation, pp.
985-94, 1993, with pennission from Elsevier Science".
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Figure JO. 7. Dynamic tension of blocks with different thicknesses. "Reprinted from Int.
J. of Plasticity 8, Zbib, H. M. and Jubran, 1. S., Dynamic shear banding: A three­
dimensional analysis, pp. 619-41, 1992, with permission from Elsevier Science".
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CHAPTER 11

ELASTIC WAVE PROPAGATION

11.1. Introduction

When a localized disturbance is applied suddenly into a medium, it will propagate to other
parts of this medium. The local excitation is not detected at other positions of the medium
instantaneously, as some time would be necessary for the disturbance to propagate from its
source to other parts of the medium. This simple fact constitutes a general basis for the
interesting subject of "wave propagation". Well-cited examples of wave propagation in
different media include, for instance, the transmission of sound in air, the propagation of a
seismic disturbance in the earth, the transmission of radio waves, among others. In the
particular case, when the suddenly applied disturbance is mechanical, e.g., an impact force,
the resulting waves in the medium are due to mechanical stress effects and, thus, these waves
are referred to as "mechanical stress waves", or simply "stress waves". Our attention in this
text is restricted to the study of the propagation of stress waves in engineering materials.

In rigid body dynamics it is assumed that, when an external force is applied to any one point
of the body, the resulting effect sets every other point of the body instantaneously in motion,
and the applied force can be considered as producing a linear acceleration of the whole body,
together with an angular acceleration about its center ofgravity. In the theory ofdeformable
media, on the other hand, the body is considered to be in equilibrium under the action of the
external applied forces, and the occurring deformations are assumed to have reached their
equilibrium static values. This assumption could be sufficiently accurate for problems in
which the time between the application ofthe force and the setting up of effective equilibrium
is short compared with the time in which the observation is made. Meanwhile, If the external
force is applied for only a short period oftime, or it is changing rapidly, the resulting effect
must be considered from the point ofview stress wave motion.

Mechanical stress waves originate due to a forced motion of a portion of a deformable
medium. As the other parts of the medium are deformed, as a result of such motion, the
disturbance is transmitted from one point, of the medium, to the next and the disturbance, or
wave, progresses through the medium. In this process, the resistance offered to deformation
by the consistency of the medium, as well as to the resistance to motion due to the inertia,
must be overcome. As the disturbance propagates through the medium it carries along
various amounts of of kinetic and potential energies. Energy can be transmitted over
considerable distances by wave motion. The transmission of energy is effected because
motion is passed on from one particle to the next and not by any sustained bulk motion ofthe
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entire medium. Mechanical waves are characterized by the transport of energy through
motions ofparticles about an equilibrium position. Thus, bulk types ofmotion ofa medium
such as those occur, for instance, in the turbulence of a fluid are not classified as wave
motion.

As mentioned above, de/ormability and inertia are essential properties ofa medium for the
transmission of mechanical waves. If the medium ~ere not deformable, any part of the
medium would immediately experience a disturbance in the form of a rigid body acceleration
upon the application of the localized excitation. Similarly, if a hypothetical medium were
without inertia there would be no delay in the displacement ofparticles and the transmission
of the disturbance from particle to particle would be affected instantaneously to the most
distant particle.

In our presentation of the subject ofwave propagation, we consider the solid medium to be
a continuum. Hence, the mechanics ofwave motion in the medium is dealt with from a
continuum mechanics point ofview. The basic concepts ofcontinuum mechanics are briefly
introduced in Chapter 2. In a continuum, the disturbance is generally considered to spread
outward, from the source (the original disturbance), in a three-dimensional fashion. During
their motion, waves propagating in a solid may encounter or interact with boundaries of the
medium. On striking a boundary, a part or whole of an incident wave may be reflected and
the mode ofpropagation ofthe wave may change.

In recent years, there has been considerable interest in the subject ofwave propagation from
both theoretical and experimental points ofview. Such interest was motivated primarily by
the advancements in the area of testing and measurement techniques. With the recent
progress in fields such as electronics and laser optics, stress waves ofhigh frequency can be
now produced and detected easily. This has been particularly pronounced in the important
domains of ultrasonics and acoustic emission. Another equally important reason for the
ensuing interest in the subject of wave propagation is the continuous emerging of newly
developed industrial materials. In this, the study ofthe phenomenon ofwave motion has been
able to identitY microstructural problems and assist in the development ofhomogeneous and
inhomogeneous material systems.

For a historical background of the subject of wave propagation, the reader is referred to
Kolsky (1963), Tolosty (1973), Graff(1975) and Davis (1988), among others. For a review
ofthe experimental methods that are commonly employed in producing and detecting stress
waves in solids, reference is made, for instance, to the books by Hetenyi (1950), Dove and
Adams (1964), Dally and Riley (1965), Keast (1967), and Magrab and Blomquist (1971).
Comprehensive review articles in this area are due to Hillier (1960), Worely (1962), among
others.
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11.2. Elastic vs. Inelastic Waves

The propagation of stress waves in solids can be divided into two categories, "elastic" and
"inelastic" waves. When loading conditions result in stresses below the yield point, solids
behave elastically and obey Hook's Laws, and consequently stress waves are "elastic ". As the
intensity of applied loading is increased, the response of the material is driven out of the
elastic range to a possible inelastic behavior. The behavior here may involve large
deformation, internal heat generation, and often failure of the solid through a variety of
mechanisms. In this context, "plastic" waves, for instance, can be propagated in a material,
such as a metal, which exhibits the phenomenon of yielding, when stressed beyond its
proportional limit. The theory of the propagation of such waves was first considered by
Donnell (1930). The theory, as originally conceived, was based on a non-linear stress-strain
relationship which was independent of the rate of loading. Subsequent experimental studies
have shown that the time-rate dependence of the stress-strain relation has a considerable
influence on the nature of wave propagation. Although Malvern (1969) has made an
important first step in this direction, a theoretical approach which takes such time dependence
into account leads to rather involved mathematical analysis. The subject of plastic wave
propagation is dealt with in Chapter 12.

The mechanical properties of viscoelastic solids, such as plastics and rubber, have been
studied extensively during recent years, and the subject of rheology is, to a large extent,
devoted to the description ofsuch viscoelastic behavior. An important development of these
studies has been a consideration of the propagation of stress waves through such materials.
The problems involved here are of particular interest, in that one is here dealing with media
which are "dispersive" with respect to both velocity and attenuation. The study of the
propagation, reflection and refraction of stress waves under these conditions leads to a
number of problems which are not only of mathematical and physical interest, but also of
practical importance in their bearing on the use of high polymers as vibration and shock
absorbers, and the response ofcomplete viscoelastic structures to rapid mechanical loading.

The third type of inelastic waves which have been studied are termed "shock waves". This
class ofwaves arises, when an instantaneous, very large load is applied to the solid medium
and lateral movement is restrained. Such conditions are normally encountered in "explosive"
loading, or during the impact of high speed projectiles. Such shock waves may arise due to
the fact that the effective bulk modulus of the material increases with increasing pressure.
The importance of these shock waves lies, on the theoretical side, in obtaining the equation
ofstate of solids at pressures which may not otherwise achieved, and, on the practical side,
in military and mining applications.

In the case ofmetals, for instance, as the intensity of the applied load increases, the material
is driven beyond its elastic limit and becomes plastic. In this state, Two waves propagate in
the solid: an elastic wave (or precursor) followed by a much slower but more intense plastic
wave. If the characteristics of the medium are such that the velocity of propagation of large
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disturbances is greater than the propagation velocity ofsmaller ones, the stress pulse develops
a steeper and steeper front on passing through the medium, and the thickness of this front is
ultimately determined by the constitution of the medium. The shock wave (or steep pressure
pulse) thus formed differs from the high pressures generated by conventional methods in that
it relies on the inertial response ofmaterial to the developed wave accelerations rather than
on the structural constraints.

There are variety of applications of wave phenomena is engineering. First is the area of
structures where the response of the structures to impact or blast loads are of significant
importance. Although under transient loads of moderate strength completely elastic
conditions may prevail throughout the structure and elastic wave theory may very well predict
the response, the behavior of structures under high intensity loads, severe enough to cause
permanent damage, would require the application of inelastic wave theories.

Another domain in the study ofmaterials and structures involving wave phenomena is that
ofcrack propagation or the interaction ofdynamic stress fields with existing cracks, voids or
inclusions in a material. Problems in this area are analogous to those pertaining to scattering
and diffraction problems arising in acoustic and electromagnetic fields.

The field of ultrasonics represents another major area of application ofwave phenomena.
The general aspects of this area involve introducing a very low energy-level, high-frequency
stress pulse of 'wave packet' into a material and observing the subsequent propagation and
reflection ofthis energy. In the majority ofapplications in this field, the means for introducing
and detecting the stress waves are based on the piezoelectric effect in certain crystals and
ceramics, whereby an electrical field applied to the material causes a mechanical strain or the
inverse effect where a strain produces an electric field. Thus an electrical pulse is capable of
launching a mechanical pulse. Detection is accomplished when a mechanical pulse strikes a
piezoelectric crystal and generates an electrical signal. Many applications in ultrasonics are
based on this reciprocal effect. For example, by studying propagation, reflection, and
attenuation of ultrasonic pulses, it is possible to determine many fundamental properties of
materials such as elastic constants and damping characteristics. The field ofnon-destructive
testing makes wide use of ultrasonics to detect defects in materials. Meanwhile, the
phenomenon of acoustic emission is a producer of stress waves and therefore of potential
application.

ll.3. Elastic Wave Propagation

In considering wave propagation in three dimensions we can, at a certain instant of time, draw
a surface through all points undergoing an identical disturbance. As time goes on, such a
surface, which is called a "wavefront", moves along showing how the disturbance
propagates. The wavefront is a moving surface which separates the disturbed from the
undisturbed part of the body. Consequently, particles of the medium that are located ahead
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of the wavefront are assumed to have experienced no motion, meantime, particles that are
located behind the front are visualized to have experienced motion and may continue to
vibrate for some time. In this context, a wavefront is considered to be associated with the
outward propagating disturbance. The direction of propagation is always at tight angles to
the wavefront. The field quantities and/or their derivatives are discontinuous at the
wavefront.

The normals defining the direction ofwave propagation are called "rays". For an h isotropic
medium, the rays are straight lines. If the wave propagation is limited to a single direction,
the disturbance at a given instant will be the same at all points in a plane perpendicular to the
direction ofwave propagation. This situation is referred to as ''plane wave". Other cases are
"spherical waves" and "cylindrical waves", whereby the wave fronts are spherical and
cylindrical surfaces, respectively.

Among the most important aspects ofwave motion are the reflection and transmission of
waves. When a wave encounters a boundary separating two media with different properties,
part of the disturbance is reflected and part is transmitted into the second medium. If a body
has finite cross-sectional dimensions, waves may bounce back and forth between the bounding
surfaces. Although it is difficult to trace the actual occurring reflections, it can be noted that
the general direction ofenergy transmission is in a direction parallel to the bounding surfaces.
In such case, it is conventionally said that the waves are propagating in a "waveguide". The
analysis of harmonic waves in waveguides leads to the notions of "nodes" of wave
propagation, ''frequency spectrum", "dispersion", and "group velocity".

When a pulse propagating through an elastic medium encounters an irregularity such as a void
or an inclusion, the pulse is diffracted. As the wave strikes a crack, for instance, a stress
singularity is generated at the crack tip which may give rise to the propagation of the crack
and, thus, to the fracture of the body. The reader is referred, in this context, to Achenbach
(1973), Gaff(1975), and Miklowitz (1978), among others.

The challenge in most of these problems stems from the complicated wave reflection,
refraction and diffraction processes that occur at a boundary or interface in the continuum.
This complexity evidences itself in the partial mode conversion of an elastic wave upon
reflection from a traction-free or rigid boundary which converts, for example, compression
into compression and shear. When there is a neighboring parallel boundary (forming then a
waveguide), the so-created waves undergo multiple reflections between the two boundaries.
This leads to dispersion, a further complicating geometric effect, which is characterized by
the presence of a characteristic length (like the thickness of a plate). In the case oflime­
harmonic waves, dispersion leads to a frequency or phase velocity dependence on
wavelength, and is responsible for the change in shape ofa pulse as it travels along a
waveguide.

Ifwe begin the analysis ofwave propagation by considering the real case of finite or bounded
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solids, more likely we overlook the main concepts ofthe wave propagation. Therefore, we
begin with an idealized, simplified case ofhaving disturbance in an infinite elastic solid. Such
a disturbance is necessarily simpler, because it is free ofboundary effects such as reflection,
refraction, diffraction and dispersion. Hence, the waves comprising this disturbance are
referred to as "body waves" to distinguish them from "surface" or "interface waves"
generated at, and propagating along a boundary. It is clear, however, since the displacement
equations of motion underlie all elastodynamic problems, body waves play a role in all
solutions. In an unbounded or infinite solid, which is idealized as an isotropic, elastic
continuum, only lli12 types of body waves can propagate. This is dealt with in the following
subsection.

11.3.1. WAVB PROPAGAnON IN UNBOUNDED ELASTIC SOLIDS

An unbounded solid is considered to extend indefinitely in the three dimensions of space so
that the complications which might arise from reflections ofwaves at the boundaries of the
medium might be disregarded.

The equations of motion of a continuum have been derived in Chapter 2, Section 2.4.3.
These equations, (2.22), were presented in terms of the stress components acting on a small
parallelepiped of the continuum without the inclusion of the response behaviour of the
medium. However, in order to employ these equations in the study ofwave propagation, one
may substitute the stress components by the corresponding components of strain through the
use ofthe constitutive relationships of the particular medium under consideration.

Following our presentation in Chapter 6, the stress-strain relations, for an isotropic elastic
solid, can be expressed in component form as

1 = Al1 + 2J.l£1l' 022 = Al1 + 2J.l£22' £33 = Al1 + 2J.l£

3 = J.l£23' 031 = J.l£31' 0\2 = J.l£12

In the above relations, l1= Ell =E lI + E22 + E)3, is the "dilatation" which represents the
change in volume ofunit cube ofthe solid and A, J.l are the Lame's elastic constants. In the
theory ofelasticity, four elastic (material) constants, not independent, are usually used. These
are Young's modulus E, Poisson's ratio u, Bulk modulus K and the rigidity (shear)
modulus which is the Lame's constant J.l. From the definitions of these constants and using
equations (11. 1) the following relations between the constants, in the case of an isotropic
elastic solid, can be determined as

(11.2)

Substituting from the constitutive relations (11.1) for the stress components in the equations
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ofmotion (2.22), the equation ofmotion for an isotropic elastic solid, in the absence of body
forces, can be written in the x,-direction in terms of the strain as

a2u, a a a
p - = - (Aa + 211£lt) + - (11£12) + -(11£13) (11.3)at 2 ax. a~ aX3

where u. is the displacement component in the x,-direction.

Replacing the strain components in (11.3) by the corresponding displacement components

(11.4a)

from equation (3.21), Chapter 3, it follows that

where 'il2 is the Laplace operator defined by

Similar relations to (IIAa) can be established for the other two components of the
displacement vector, namely,

a2u aap __2
= (A +11) - + 11'il2u2at 2 Ox2

and

a2u aa
+ 11'il2u3

p __3 = (A +11) -
at 2 aX3

(11.4b)

(11.4c)

Equations (11.4) above are the equations of motion, in term of the displacement, for an
isotropic elastic solid in the absence of body forces. These equations may be expressed
conveniently in a vector form as

(11.5)
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which is the form of the well-known 'Wavier's equation of motion". The latter is
conventionally adopted as the governing equation for the motion ofan isotropic, elastic
solid. Equation (11.5) corresponds to the propagation of~ types of waves through an
unbounded isotropic, elastic solid; namely, "dilatational" and "rotational" waves.

Differentiating (11.4a) with respect to XI> (11.4b) with respect to X2 and (H.4c) with
respect to x3 and adding the resulting expressions, one obtains the following "wave
equation" for an unbounded isotropic, elastic medium.

(11.6)

The above wave equation indicates that the dilatation a propagates through the medium
with a velocity ofmagnitude [(A+2~)/p]~. Denoting the latter by Ch then, c\ = [A+2~)/p]~

In view of equations (11.2), the magnitude of the dilatational wave velocity c\ may be
expressed further by

= [(A+2~)/p]112 = [ E(I-v) ]112 = [K+4~/3]11
I p(1 +v)(1 -2v) P

(11.7)

It is noticedfrom (11.7) that the velocity c1 , ofa dilatational wave, is dependent only on
the elastic constants ofthe isotropic elastic material as well as its density. In an operational
form, the wave equation (11.6) can be written as

ria = 0

where r 12 is a "dilatational wave operator" expressed (see, e.g., Chou,1968) by

and a =\l . u =dilatation

(11.8)

(11.9)

A "dilatational" wave, corresponding to the wave equation (11.8), is also referred to as
"i"otational", since the propagation of such a wave involves no rotation of an elemental
volume ofthe solid. A "dilatational" wave is also known as "bulk wave" or "primary(P)
wave".

On the other hand, ifwe eliminate the dilatation a between (11.4b) and (11.4c), that is by
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differentiating (l1.4b) with respect to x] and (11.4c) with respect to X2 and subtract, it
follows that

This equation can be written as

where WI is the rotation about the xI-axis (see Chapter 3). Similar relations can be obtained
for w2 and w] (the rotations about the x2- and xl-axis, respectively).
Thus, in generalized notation, one can write

(11.10)

where W= "V x w/2 is the rotation vector.

It follows from (11.10) that the rotational wave propagates in an isotropic, elastic solid with
a velocity magnitude (f1/PY~. We denote the magnitude of the rotational wave velocity by
~, then,

(11.11)

It is noticed, from the above expression, that the rotational wave velocity c1 is, similar to
the dilatational velocity c/.. dependent only on the elastic constants as well as the density of
the material.

With reference to expressions (J J. 7) and (J J. I J), it is evident, in the case ofan isotropic
elastic solid, the two velocities of body waves are independent of the frequency. In other
words, there is no dispersion (change ofform) ofthese waves, i.e.,_body waves travel, in an
isotropic elastic solid without change in form.

Applying the vector curl operator to (11.5), it can be shown that the vector form of the wave
equation (11.10) can be expressed as
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(11.12)

where r/ is a rotational wave operator of the form (e. g., Chou, 1968)

(11.13)

and w =V x u = rotation.

A "rotational" wave is also called "equivoluminal" wave, since there is no volume change
would occur during the wave motion. A rotational wave is also known as "distortional"
wave or "secondary (S) wave".

Equation (11.8), or (11.12), is a necessary, but not a sufficient, condition for the satisfaction
of the Navier's governing equation ofmotion (11.5). Thus, for every displacement field that
satisfies (5.5), the corresponding !:J. and w will satisfY (11.8) and (11.12), respectively. On
the other hand, a displacement field with a dilatation satisfYing (11.8), or a rotation satisfYing
(11.12) would not necessarily be a solution of the Navier's governing equation (11.5).

The particle motion in a dilatational wave is longitudinal, i.e., along the direction of wave
propagation. In case of a rotational wave, the particle motion is transverse, that is
perpendicular to the direction of propagation of the wave. Experimentally, one would
generally attempt to generate one type ofwave with the exclusion of the other. However, it
should be emphasized that in the propagation ofdilatational waves in an unbounded solid, the
medium would not be simply subjected to pure compression, but to a combination of
compression and shear. This is supported by the physical situation and mathematically by the
appearance ofboth the bulk modulus and the shear modulus in the expression (11.7) of the
dilatational velocity; see, for instance, Kolsky (1963).

11.3.2. IRROTATIONAL AND ROTATIONAL DISPLACEMENT FIELDS

Consider the displacement vector field u. In dynamic elasticity, u may be decomposed into
an "irrotational field", say uIR, associated with a scalar potential <I> and a "rotational
field", uR, associated with a vector potential tJI. Thus, according to Helmholtz theorem (see
Morse and Feshbach, 1953), for any displacement field, subject to mild continuity and
boundary conditions, one may find at least one set of functions <I> and tJI such that

u = V<I> + Vxw, V·t\I = 0 (11.14)
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The condition V.I\1=O is necessary to uniquely determine the three components of the
displacement vector u from the four components of(et> and 1\1). Substituting (11.14) into
Navier's equation (11.5) yields

(H.t5)

Every solution of(1 1.14), or (IUS), is always a solution of(I1.5). Accordingly, equations
(11.14) and (11.15) are also governing equations to the induced motion in an isotropic, elastic
solid and each constitutes an exact equivalence to (11.5); see Chou (1968). A particular class
of solutions of (11. IS) is

(H.t6)

with a particular solution

(H.t7)

This is with the understanding that the class of solutions presented by (11.16) and (11.17) is
sufficient, but not necessary, for the satisfaction of(II.5). In equation (11.17), r/ and r/
are the dilatational and rotational wave operators introduced earlier by equations (11.9) and
(11.13), respectively.

An lrrotational Field
A displacement field, u, is referred to as "i"otational" if

v x U = 0; u = U IR

For an irrotational wave, one has, following Eqn. (11.5),

or, alternatively, according to Potential theory,

U 1R = Vet>

(11.18)

(t1.l9)

(11.20)

where et> is a scalar potential function. Equation (11.20) implies that, for an irrotational
wave, the rotational vector w is equal to zero in magnitude. Following (11.17), then, for
an irrotational field
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(11.21)

Accordingly, the scalar potential t/J is seen to be associated with the dilatational
(i"otational) part ofthe disturbance.

Substituting (11.21) into (11.4), one has, for an irrotational field,

a2u.
p -' = (J.. +21l)yr2u.at 2 I

(i=I,2,3)

Rotational Field
A displacement field, u, is called "rotational" if

'i/. U = 0; U = u R

For a rotational field, the Navier's governing equation (11.5) results in

riu = 0

u = 'i/x 'Ir

(11.22)

(11.23)

(11.24)

(11.25)

i.e., the vector potential t/t is associated with the rotational part ofthe disturbance.

The above conditions for a rotational wave translates into that, in this case, the dilatation
Il=0. Hence, the set of equations (11 .4) reduces, for a rotational wave, to

(11.26)

(11.27)

Combining equations (11.14), (11.20) and (11.25), it follows that in an isotropic, elastic solid,
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a displacement field u is decomposed vectorially into an "irrotational field ulR" and a
"rotational one uR". Further, in view of(I1.I7), (11.20) and (11.25), it may be concluded that
for every displacement field that satisfies (11.5), there exists a set of functions UIR and UR
such that [see, equations (11.19) and (11.24)]

(11.28)

This translates, physically, into the following:

A disturbance in an isotropic, elastic solid would generate two waves, one dilatational,
involving no rotation, with velocity CJ and the other is rotational, involving no volume
change, that propagates at velocity c1" The ratio ofthe two speeds may be expressed, with
reference to (I i. 7) and (i i. i i), as

.2 = Ie =( A + 2 \l ) ~ =[ 2(1- v) ]~,
c2 \l I-2v

where v= Poisson's ratio. Since 0 ~ v ~ I, it follows that c, > c2.

in view of (I 1. 28), the dilatational and rotational waves are not coupled within the
continuous solid (except Perhaps on the boundary where the prescribed boundary conditions
must be satisfied).

Table 11.1 summarizes the relationships given in the foregoing, in terms of displacements,
while Table 11.2 gives such relationships in terms of potentials (see, also, Chou, 1968).

11.3.3. PLANE WAYES IN UNBOUNDED ELASTIC MEDIA

Plane waves are propagating disturbances in two- or three-dimensions where the motion of
every particle in planes perpendicular to the direction ofpropagation is the same. An example
ofa propagating (three-dimensional) plane disturbance is given in Figure II. I. As shown in
this figure, the magnitude of the propagation velocity of the plane is denoted by c while the
nonnal to the plane is designated by n. The position of an arbitrary point P on the plane is
indicated by r.

For the plane wave illustrated in Figure 11.1, the motion of every particle along the plane is
defined by

U • r - ct = constant (11.29)
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X,
Figure JJ. J. Plane wave motion in an unbounded elastic medium.

Consider now the plane wave

u = Af(n'r - ct) (11.30)

where A is the displacement vector ofthe particle along the plane ofthe wave and f (.)
indicates an appropriate function ofthe shown argument. Substituting (11.30)
in the Navier's governing equation of motion, (11. 5), it can be shown that

(A. + Il)Aj nj nj + IlAj = pc 2 A j (11.31)

Relation (11.31) above represents three homogenous equations in the amplitude components
AI> A2, A3· This leads, upon expanding the determinant ofcoefficients, to

(11.32)

This equation gives the two roots
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c t = [A ~2~r
c2 = (~/p)t/2 (b)

(11.33)

which again are, respectively, the magnitudes of the velocities of dilatational and rotational
waves.

Accordingly, plane waves may propagate, without dispersion, at one or the other velocity
(i.e., c/ or c) in the unbounded, isotropic elastic medium. Reference is made to Table 11.1
for representative values of these velocities, as calculated for various engineering materials.

11.3.4. WAVE PROPAGATION IN SEMI-INFINITE ELASTIC MEDIA

When a stress wave encounters a boundary between two media, energy is reflected and
transmitted from and across the boundary. On the other hand, if the boundary is a free
surface, reflection of the waves will be much more pronounced. It is well recognized that a
characteristic phenomenon of the elastic wave-boundary interaction in solids is that ofmode
conversion. In this, an incident wave, either pressure or shear, on the boundary will be
converted into two waves on reflection. Such mode-conversion phenomenon along with the
fact that two types ofwaves may exist in an elastic solid, as discussed earlier, accounts for
the relative complexity of wave propagation in solids in general as compared to equivalent
problems in acoustics and electro-magnetics (e.g., Graff, 1975).

I

I

1

I
1

I

I

I
I

I

1

~-------------~--------~
" 0

Figure 11.2. Wave motion in a semi-infinite elastic medium.
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With reference to Fig. 11.2, we consider, following Graff (1975), plane harmonic waves
propagating in the half-space x2 > O. It is assumed that the wave normal n lies in the XI X2­
plane. This plane will be referred to as the vertical plane while the XI x3-plane, the surface
ofthe half-space, will be referred to as the horizontal plane. Recalling the previous discussion
concerning the propagation of plane waves in infinite media, Section 11.2.2, it is recognized
that the particle motion due to dilatation will be in the direction ofthe wave normal and will,
thus, be in the vertical plane only. The transverse particle motion, however, is due to shear
and will have components both in the vertical plane and parallel to the horizontal plane. In
Fig. 11.2, the normal displacement component is designated by u,. and the transverse
components are denoted by 1Iy and U3 which are, respectively, in the vertical and horizontal
planes. As every particle along the plane of the wave is acquiring the same motion, the
motion will be invariant with respect to X3 if the wave normal is in the vertical plane. In
terms of the potentials 4> and W, the governing equations can be expressed as

= 13<1> aW3
ul +-

aXI a~

13<1> aW3
u2 --aX2 ax l

aWl aW2
+- = 0

aXI ~

V2<1> _ 132<1> V2Wj =
a2Wj

---, ---
c 2 at 2 c 2 at 2

I 2

(11.34)

where Wi (i=I,2,3) are the components of the vector function W. In deriving the above
governing equations both the postulate V. W= 0 and the x3-independence ofall quantities
have been used.

Combining the displacement expressions in (11.34) with the stress-displacement constitutive
relations for the isotropic elastic solid, the stress components can be established in terms of
the potentials <I> and W, i.e.,
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(11.35)

with boundary conditions

022 = 021 = 023 = 0, (11.36)

Experimental studies on wave propagation in semi-infinite media may vary considerably in
scope. Ultrasonic excitation is often used as an impulsive surface force, meantime, photo­
elasticity has been conventionally adopted as a recording technique for the patterns ofwave
motion in elastic materials. Dally, Ourelli and Riley (1960), for instance, used small explosive
charges of lead azide (PbN6) to dynamically load a low-modulus urethane rubber plate and
the dynamic fringe propagation patterns were recorded by a high-speed camera (see, also,
Dally, 1968 and Graff, 1975). Dally and Riley (1967) used an embedded polariscope
technique to experimentally study the three-dimensional problem of a point load on half-space
using a photo-elastic method (see, e.g., Pindera, 1986).

11.3.5 SURFACE WAVES

As per our earlier discussion concerning elastic wave propagation in an infinite elastic
medium, only two types ofwaves can be propagated, i.e, dilatational (primary, P -) and
rotational (secondary, S -) waves. In the case of a semi-infinite medium, however, a third
type ofwave may exist. The existence of the three types ofwaves in a semi-infinite medium
was first encountered in seismology where it was observed that in an earthquake there were
two early, rather minor, disturbances as a result of P- and S- waves, but the main damaging
effect was done by the third shaking. Such a disturbance was not consistent with the elastic
wave phenomenon in infinite media. This led to the realization of existence of a surface wave
in semi-infinite media. In case ofan earthquake, the relative significance of P- and S- waves
is considered to be a consequence ofvolumetric dispersion of energy into the earth's interior,
but, the significant amount of energy corresponding to the third wave suggested that this
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wave dissipated its energy less rapidly then the P- and S- waves. This could be rationalized
by assuming it, the third wave, was basically limited to the surface. The other characteristics
ofthe surface wave, other then it is confined to the surface zone, is that the velocity of surface
wave is less than that of body waves, see, e. g., Kolsky (l963). We introduce below two
types of surface waves; namely, Rayleigh waves and Love waves.

(A) Rayleigh Waves
When the solid has a free surface, "Rayleigh" surface waves can also exist. These waves were
first introduced by Rayleigh (1887), see, also, Lamb (1904), who showed that their effect
decays rapidly with depth and that their velocity is less than that ofbody waves c\ and ~.

It is shown by Kolsky (1963) that Rayleigh waves do, in fact, travel with a fraction ~ of the
velocity ~ of distortional waves where ~ is obtained from the equation

In the above equation, b is an elastic constant of the material expressed by

b = [(1 - 2v)/(2 - 2V»)lI2

where 0 is Poisson's ratio.

(11.37)

(11.38)

In Rayleigh waves, the particle motion is parallel to the direction ofwave propagation and it
is in a plane perpendicular to the surface containing the waves during travel.

In case ofan elastic solid, the velocity ofa "Rayleigh" surface wave is independent ofthe
frequency and depends, similar to the body waves, on the elastic constants ofthe material.
In other words, there is no dispersion (change ofform) ofthese waves.

It was Lord Rayleigh the first to investigate this type of surface wave in which the amplitude
of the wave decays exponentially with depth, from the surface to the medium interior.
Rayleigh waves spread only in two dimensions (see, e.g., Davis, 1988). It was anticipated by
Rayleigh that waves of this type might approximate the behavior of seismic waves observed
during earthquakes. We follow, below, the model of Achenbach (1973) to determine the
displacement and velocity ofRayleigh waves.

The criterion for Rayleigh surface waves is that the displacement decays exponentially with
distance from the free surface. Thus, we consider components of the form

u\ =A e -b"2 exp [ik(x\ - ct)]

u2 = B e -b"2 exp [ ik( XI - ct) ]

(11.39a)

(1I.39b)

(11.39c)
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The real part of b is supposed to be positive, so that the displacements decrease with
increasing X2 and tend to zero as X2 increases beyond bounds.

Combining Equations (11.39) with the equation of motion (11.5) yields two
homogeneous equations for the constants A and B. A non-trivial solution of this system of
equations exists if the determinant of the coefficients vanishes, which leads to the equation

(11.40)
The roots of(1 1.40) are

b, =k( 1- :;t
It is noted that b. and bz are real and positive ifc<e.-<G., and if positive roots are considered.

The ratios (81A) corresponding to b. and b2 can now be computed as

(B) b.
A • = - ik '

Returning to Equations (11.39), a general solution of the displacement equations ofmotion
may, thus, be written in the form

[
b, -bx ik -bX,]u2=--. A,e 12+_~e 2 exp[ik(x,-ct)].
tk b2

(11.41)

(11.42)
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The constants Al and A2 and the phase velocity c have to be chosen such that the stress
tensor components 022 and °21 vanish at x2=0. By substituting Equations (11.39), (11.41)
and (11.42) into the expressions for 022 and °21 at x2 = 0, we obtain after some manipulation
For a non trivial solution the determinant of the coefficients of AI' A2 must vanish, which
yields the following well-known equation for the phase velocity ofRayleigh waves:

(11.43)

It is noted that the wave number does not enter in (11.43). Thus, surface waves at a free
surface of an elastic half-space are thus nondispersive.

Since (11.43) is an equation for c2 , the two roots are each other's opposite. As noted earlier,
Eq. (11.43) shows that the roots may be expected along the real axis for - Cr < c < Cr
Obviously, only the positive real root is of interest. The roots for c2 are usually computed by
rationalizing (11.43).

Denoting the phase velocity ofRayleigh waves by <1t, Eqn.(11.43) can be considered as an
equation for <1t / Cr, with Poisson's ratio v ( 0 ~ v ~ 0.5) as independent parameter.

A good approximation of cR can be written as

1 + v

0.862 + 1.l4v
cR =

(11.44)

As v varies from 0 to 0.5, for most metals, the Rayleigh wave phase velocity increases
monotonically from 0.862 Cr to 0.955 Cr·

Given suitable generating conditions, surface waves as well as body waves are generated at
a bounding surface. For a two-dimensional geometry the surface waves are essentially one
dimensional, but the body waves are cylindrical and undergo geometrical attenuation. Thus,
at some distance from the source the disturbance due to the surface wave becomes
predominant.

Rayleigh waves have been studied in great detail and they have found several applications.
The attractive features are the absence of dispersion and the localization of the motion in the
vicinity of the surface. For further study on the subject matter, the reader is referred to
Viktorov (1967) and Graff(1975), among others.
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(B) Love Waves
The "Love"wave is a shear surface wave confined to a relatively shallow zone. Recalling our
earlier discussion, for Rayleigh waves, the material particles move in the plane of propagation.
Thus, for propagation in the xI-direction along the surface of the half-space x] ~ O. the
displacement U3 vanishes for classical Rayleigh waves.

The question may now be raised whether surface waves with displacements perpendicular to
the plane of propagation, the plane X/.X] , are possible in a homogeneous isotropic linearly
elastic half-space. We recall that the S-waves are governed by the equation:

A solution of (I 1.49), representing a surface wave, is written in the form

u
3

= Ae -bK1 exp [ik (XI - ct)],

(l1.45)

(11.46)

where the real part of b must be positive. By substituting (11.46) into (11.45) we find

(11.47)

For a free surface, the boundary condition at Xl = 0 is

(H.48)

The boundary condition (11.48) can, however, be satisfied only ifeither A=O or b=O. Neither
case represents a surface wave.

Experimental data, particularly as gathered from seismological observations, have, however,
shown that surface waves may occur along free surfaces. An analytical resolution of this
question was provided by Love, who showed that such waves are possible in the half-space
covered by a layer ofa different material (e.g., Ewing et al., 1957).
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11.4. Reflection and Refraction ofWaves at a Plane Interface

The presence of a discontinuity in the material properties generally produces a significant
influence on systems ofwave propagating through the medium. Consider, for example, the
propagation of plane harmonic waves in an unbounded medium consisting of two joined
elastic half-spaces ofdifferent material properties. In such a composite medium, systems of
plane waves can be superposed to represent an incident wave in conjunction with reflections
and refractions at the interface between the two media. The wave which emanates from an
infinite depth in one of the media is called the incident wave. An incident wave on an
interface would result in additional reflected and refracted waves in the region. For the
special cases of an elastic half-space which adjoins a medium which does not transmit
mechanical waves, the system ofwaves consists of incident and reflected waves only. In
general, all media transmit waves, but, for practical purposes, refraction ofelastic waves at
an interface ofa solid elastic body with air may be neglected. In this case, a reflection ofplane
waves only at the free surface may be considered.

Basically, as mentioned earlier, two types of body elastic waves may be propagated through
a solid medium; namely P- ans S-types ofwaves.. It is found that, when a wave ofeither type
impinges on a boundary between two media, both reflection and refraction take place. In this
section, we study the reflection of both the dilatational and distortional waves at free
boundary and also reflection and refraction of these two waves at an interface between two
media, whereby each case is reviewed separately. For further studies on this context, the
reader is referred to Ewing et aI. (1957), Kolsky (1963), Kinslow (1970), Achenbach (1973),
Tolstoy (1973), Eringen and Suhubi (1975), Graff (1975), Miklowitz (1978), Miklowitz,
and Achenbach (1977), Davis (1988) and McCarthy and Hayes (1989).

11.4.1. DILATATIONALWAVES AT AFREE BOUNDARY

By Free Boundary we mean a surface in vacuum when there can be no refracted waves. Fig.
11.3 shows the reflection ofa dilatational wave at a free surface. In this figure, at is the angle
of an incident dilatational wave (of an amplitude AI)' Meantime, a2 is the angle of the
reflected dilatational wave (with an amplitude AJ. Let ~" P2 represent the amplitude and the
angle ofthe reflected distortional wave. As shown in Fig. 11.3, the direction of propagation
ofthe incident dilatational wave is in the Xt X2 plane making the angle of incidence at with the
X t - axis, whilst, the free boundary is the X2 X3 plane. The following relations between the
various angles of incidence and associated with wave velocities may be written (see, e.g.,
Kolsky, 1963) ,

Thus,

= (11.49)



www.manaraa.com

104

(11.50)

(11.51)

Thus, when a dilatational wave is incident on a free surface with an angle tt, two waves are
generated on reflection: one is a dilatational wave reflected at an angle equal to the angle of
incidence (x, while the other is a distortional wave reflected at a smaller angle 13 where sin
13/sin (X = c.r/cv

Dilatational wave
(reflected)

Distortional wave
(reflected)

X3
Figure 11.3. Reflection of a dilatational wave at a free surface. The face
boundary is the X2 ·X3 plane.

Free surface -------~-------X2

Dilatational wave
(incident)

11.4.2 DISTORTIONAL WAYES AT AFREE BOUNDARY

In a similar analogy to the above presentation, if a distortional wave is incident on a free
surface at an angle y, Figure 11.4, both distortional and dilatational waves are generally
reflected. The distortional wave is reflected at the same angle y while the dilatational wave
is reflected at a generally smaller angle 6 where sin y/sin 6 = CrlCt..
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Distortional wave
(reflected)

Dilatational wave
(reflected)

Reflection of a distortional wave at a free boundary.

Dilatational wave
(incident)

Free surface -------+-------X2

11.5. Wave Propagation in Bounded Elastic Solids

In this section, the propagation ofstress waves along a cylindrical bar will be considered first,
as this is a problem which has been investigated most fully theoretically and on which there
are also some experimental data. Before examining the problem in terms of the exact elastic
equations, we shall consider the simple treatment which applies to the propagation ofwaves
the lengths ofwhich are large compared with the diameter of the bar.

There are three different types of vibration which occur in thin rods or bars; these are
classified as "longitudinal", "torsional", and "lateral".

In longitudinal vibrations, elements of the rod extend and contract, but there is no lateral
displacement of the axis ofthe rod. In torsional vibrations, each transverse section of the rod
remains in its own plane and rotates about its center, with the axis of the rod remaining
undisturbed. Meanwhile, lateral vibrations correspond to the flexure of portions of the rod,
with elements of the central axis moving laterally during the motion.

In this section the subject of stress wave propagation in bars is first discussed. Then, the
approximate theory of stress wave propagation in plates is briefly reviewed. For further
information on the subject matter, the reader is referred to Kolsky (1963), Graff (1975),
Miklowitz (1978) and McCarthy and Hayes (1989).

11.5.1. STRESS WAYES IN RODS

In all cases oflongitudinal, torsional and lateral (flexural) stress waves in bars the approximate
description ofwave motion has been used by following an approximate solution such as the
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one developed by Achenbach (1973). In this case, one can find the velocities of different type
ofwaves in a long rod. The exact treatment of harmonic wave motions in an elastic circular
cylinder is already rather complicated. For a cylinder with other than circular or an elliptical
cross section, however, it becomes rather impossible to carry out an exact solution. Even for
a strip ofrectangular cross section whose lateral surfaces are free oftraction it is not possible
to analyze general harmonic wave motions rigorously within the context of the linear theory
ofelasticity (Davis 1988). For this reason, simplified analytical models have been proposed
that provide an approximate description ofwave motions in rods of rather arbitrary cross
section. In this section, we review some models that are commonly used. These models are
based on a priori assumptions with regard to the deformation of the cross-sectional area of
the rod, which simplify the description of the kinematics to such an extent that the wave
motion can be described by one-dimensional approximate theories. Further, for propagation
oftime-harmonic waves, it was found that the approximate theories can adequately account
for the dispersive behavior of the lowest axisymmetric and flexural models over a limited but
significant range ofwave-numbers and frequencies.

The governing equations can be obtained either by using variational methods or by
straightforward momentum considerations of an element of the rod. The latter approach,
however, has the advantage that the physical concepts are conveyed more clearly. For the
more complicated theories it is, however, easier to employ the assumed displacement
distributions to compute the corresponding kinetic and strain energies for an element of the
rod, whereupon Hamilton's principle can be applied to obtain the governing equations. In the
following analysis, we present a brief derivation of the equations for the Timoshenko model,
and we state only the governing equations for some other models. In all cases, the
assumption that the wavelength is long compared to the lateral dimensions of the rod would
prevail.

11.5.2. LONGITUDINAL WAVES IN RODS

Longitudinal stress waves are also called extensional waves. In an extensional wave motion,
the dominant component of the displacement is in the longitudinal direction. Based on the
assumption that the cross-sectional area of the rod remains plane, it can be shown that
consideration of the forces acting on an element leads to the equation

(11.52)

where,
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(11.53)

Eq. (11.52) predicts that extensional harmonic waves in the rod are not dispersive.

11.5.3. TORSIONAL STRESS WAYES IN RODS

In the approximate theory, it is assumed that transverse sections remain plane and that the
motion consists ofa rotation ofthe sections about the axis. This leads to a wave equation for
the angle of rotation with a propagation velocity.

(11.54)

In the above equation, K is the radius ofgyration ofa cross section ofthe rod about its axis,
A is the cross-sectional area and C is the torsional rigidity of the rod.

11.5.4. FLEXURAL STRESS WAYES IN RODS

In the approximate theory offlexural motion ofrods of an arbitrary but uniform cross section
with a plane ofsynunetry, it is assumed that the dominant displacement component is parallel
to the plane of symmetry. It is also assumed that the deflections are small and that cross­
sectional areas remain plane and normal to the neutral axis. For a beam, free of lateral
loading, the equation ofmotion is

(11.55)

where w is the deflection, I is the moment of inertia of the cross-sectional area A about the
neutral axis. Substituting a harmonic wave, the phase velocity is expressed as

(11.56)

Thus, the phase velocity is proportional to the wave number, which suggests that (11.56)
cannot be correct for large wave numbers (short waves). For a circular cylindrical rod, Eqn.
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(11.56) reduces to

( )

1
1 E -

c ="2 P 2 ka.

which results in the following frequency

( )

1
1 E -(,) ="2 P 2 k 2 a.

11.5.5. STRESS WAVES IN A LONG BAR

(11.57)

(11.58)

In this section, elastic stress wave motion in a long bar is considered in view of the work of
Zukas et al. (1982).

In the previous sections, we learned that when a material is stressed with a suddenly applied
load, the deformations and stresses are not transmitted immediately to all parts of the body.
Thus, remote portions may remain undisturbed for some time. Deformations and stresses
progress through the material in a form of one or more stress disturbances which travel, in
a perfectly elastic material, at a finite velocity form the area of application of the load, this
velocity being a characteristic of the material. Such a suddenly applied, or impulsive, load
may be produced by a sharp mechanical blow, a detonating explosive, or by impact of a high
velocity projectile. Regardless of the method of application, the consequent stress
disturbances have identical properties.

In the elementary case, we consider two types of stress pulses generated by an impulsive load.
The first, the longitudinal wave, is also called a dilatational, irrational, or primary (P) wave,
the terms being synonymous. In a longitudinal pulse, the particle motion is parallel to the
distortional, rotational, secondary (S), or shear wave, the particle motion is normal to the
direction of propagation of the pulse and the strain is a shearing strain.
direction of propagation of the pulse and the strain is pure dilatation. In a transverse wave,
otherwise called a
Two velocities must be considered: the velocity ofpropagation c of the disturbance and the
particle velocity v.

Particle velocity is defined as the velocity with which a point in the material moves as the
disturbance displaces across it. Both the velocity of propagation c of the disturbance and the
particle velocity venter into the governing equations in distinctly different ways as dealt with
in the following section.



www.manaraa.com

109

11.5.6. GOVERNINGWAVEEQUATIONS

The relationship between the longitudinal stress at a point in a body and the longitudinal
particle velocity VL at the point is expressed, in view Newton's second law, as

(11.59)

Here, FL is the longitudinal force acting on a given cross section, dt is the time the force acts,
m is the mass it acts against, and VL is the velocity imparted to m by FL' Since

FL
0=-

A
m=pAdl

(11.60)

where dl is the distance the pulse has moved in time dt, equation (11.78) can be written as

or

aadt=pAdlduL

dl
a=p-duLdt

(11.61)

but dl / dt is just the speed of the pulse Ct, so that

In a similar manner it can be shown for the transverse pulse that

(11.62)

(11.63)

where"t is the shear stress, Cr is the velocity ofpropagation of the transverse disturbance,
and !J. U-r is the change in particle velocity due to shear.

11.5.7. REFLECTION OF WAVES

Any elastic wave will be reflected when it reaches a free surface of the material in which it is
traveling. The simplest case occurs when the wave strikes the surface normally. In the case
of a longitudinal wave, since the stress normal to the surface, at the surface, must be zero,
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the reflected pulse must be opposite in sense to the incident pulse (a compression wave would
be reflected as tension and vice versa). To illustrate the situation, one considers the
displacement due to the incident pulse to be u. = f(x. - ct) moving in the positive XI direction.
After impingement on a free surface, a reflected wave moves in the negative XI direction. Let
the displacement for the reflected wave be ofthe form UR = g (XI + ct). At the free boundary,
the net stress must be zero.

Since the stress is given by

0NET =°1 + OR = 0 at XI = I

or

°=E t =E (0 u. /0 XI)

0NET = E [ f' (I - ct) + g' (1 + ct)] = 0

(11.64)

(11.65)

Hence, the shape of the reflected pulse is the same as the shape of the incident pulse, but it
is opposite in sign.

f' (I - c t) = - g . (I + c t )

The net particle velocity may be, also, found by superposition. Thus,

(1l.66)

= c( - ( + g')

=2cg
(1l.67)

Hence, the particle velocity and also the displacement in a region where the incident and
reflected pulses overlap are twice that for either pulse. At a fixed boundary, we require the
displacement and particle velocity to vanish. Thus,

UNET = - c f' (I - ct) + cg' (1 + ct)
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or

[' (I - ct) = g' (I + ct) (11.68)

The net stress is doubled at a fixed boundary, whilst the net displacement and particle velocity
are zero.

(
aUI auR). .

0NET = E - + - = E [f (I - ct) + g (I + ct)]ax ax
=2E['(I-ct)

(11.69)

11.5.8. STRESS WAYES IN BARS OF DISCONTINUOUS CROSS SECTIONS

Following Zurkas et a1. (1982), we consider a bar with a change in cross section, as illustrated
in Figure 11.5 Assume that a disturbance at the left end of the bar has caused an elastic
compressive pulse, with an intensity a, to propagate to the right. At the interface with the
second portion of the bar, with different section, the wave will be partly transmitted and
partly reflected. Let the transmitted wave amplitude be or, and the reflected wave amplitude
be OR' Two conditions must be satisfied at the interface:

1. The forces at the interface, in both portions of the bar.
2. Particle velocities at the interface must be continuous.

Taking OR and or to be compressive, condition 1 above gives

AI (01 + OR) =~ 0T

where AI' A2, are the respective cross-sectional areas. Condition 2 above gives

or, using °= pcv

Solving for OR and Or in terms of 0" gives

(11.70)

(11.71)

(11.72)
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(11.73)

(11.74)

(11.75)

Consider several implications of the above expressions:

1. If the materials in both bars are identical then PI = P2 and CI = C2 . Then,
IfA 2> AI' then 0T and OR will be of the same type. IfA2 < AI , then, 0T and OR will
be of opposite sign.

2. If A 2 / AI - 0, the rod is effectively free and ~ - -~. If Az / Al - 00, the rod is fixed
and bR - bl, bT - 0.

3. For no wave reflection to occur from the discontinuity in the bar,

OR =°:. ~ P2 c2 =Al PI cI and 0T =°1JE2 P2 / EI PI (11.76)

4. In (11.76), the coefficient of 0, is positive. This means that tension will be
transmitted as tension and compression as compression. For a situation wherein
P2 c2 » PI cl' or medium 2 is much more rigid than medium 1, Figure 11.S, the stress
of the transmitted pulse is approximately twice the stress of the incident wave.

5. In (11.76), the coefficient of 0" can be positive or negative depending on if
PI c. < P2 c2 · If the coefficient is negative, an incident compression-stress is reflected
as a tensile stress and vice versa. If the coefficient is positive, the incident
compressive stress is reflected as a compressive stress. These results are in complete
agreement with the laws of conservation ofmomentum and kinetic energy.
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Figure 11.5. Wave reflection and transmission at changes in cross section.

11.5.9. STRESS WAVES IN PLATES

In this section, we briefly review the elastic stress wave propagation phenomena in plates. The
reader is referred, in this context, to the work ofRayleigh (1887), Lamb (1917), Graff(1975),
Miklowitz and Achenbach (1977), and McCarthy and Hayes (1989).

Similar to the case ofelastic wave propagation in rods, we have three different types ofwaves
propagating in a plate, i.e., "longitudinal", «torsional" and" flexural" waves. When we
deal with a semi-infinite plate, the wavelength is long compared with the thickness of the
plates, and the longitudinal wave velocity CL is expressed by

[ ]
1 [ ] 1C - 4 11 (A +11) "2 _ E "2

L- (A+21l)p - p(l-v2)
(1I.77)

The increasing attention to the dynamic behavior of materials and evermore increasing of
application ofultrasonics are two very important reasons behind the significance of the wave
propagation phenomenon, but, there are, also, a number of other reasons:

First, experimental methods for the generation and detection of high frequency mechanical
waves have become available only with the advent ofelectronic techniques and of high speed
photographic recording apparatus. Secondly, the appearance of new materials, such as
plastics and polymeric material systems in general, the mechanical properties ofwhich depend
very markedly on the time-rate of loading, has led to studies ofthe mechanical response of
such materials to high frequency mechanical waves, with a view to correlating their
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microscopic structure with their mechanical behavior. Second, engineers have become more
and more concerned with the response ofconventional engineering materials, such as metals,
to large impulsive forces applied for very short periods of time. This interest arises both in
military developments and in problems of impact and of shock absorption in engineering
structures. A proper understanding of all these problems requires a knowledge of the nature
ofstress wave propagation in engineering materials.

A number ofdistinct types ofwave propagation in elastic solids have been investigated and,
although the phenomena observed in practical situations do not always conform to the
idealized mathematical models, the theoretical work has received experimental confirmation
in a number ofthe problems, and the experiments have, in tum, shown effects which have led
to further theoretical advances Kolsky (1963). That gives us enough justification for the
idealization and assumptions made in the analysis pertaining ofwave propagation phenomena.
The assumptions of being continuous, isotropic, homogenous and perfectly linear elastic
material are never true for media, but in order to prevent very complicated problems that do
not have an easy mathematical solution we make those idealizations.

The physical explanation of the propagation of a wave lies in the interaction of the discrete
atoms of a material. But two properties of a medium, i. e., deforrnability and inertia, are
essential for the transmission of a mechanical disturbance. All real materials are deformable
and possess mass and consequently all real material transmit mechanical waves. The inertia
ofa medium first offers resistance to motion, but once the medium is in motion inertia, in
conjunction with the resilience ofthe medium tends, to sustain the mot;on~ If, after a certain
interval the externally applied excitation becomes stationary, the motion of the medium will
eventually subside due to frictional losses and a state of deformation will be reached. The
importance ofdynamic effects depends on the relative magnitudes of two characteristic times:
the time characterizing the external application of the disturbance and the characteristic time
of transmission of the disturbance across the body. In other words, for low intensity
excitations, both the geometry ofthe entire structure as well as the nature of the material from
which it is made playa major role in resisting external forces. As loading intensity increases,
the response tends to become highly localized and is more affected by the constitution of the
material in the vicinity of load application than the geometry of the total structure. A
description of the phenomena in terms of elastic, inelastic, and shock wave propagation
becomes appropriate.

Thus, we have to know, indeed, when we can analyze the behavior of a material simply by
using strength ofmaterial and dynamic theories and under which circumstances we have to
use wave propagation phenomena to analyze the behavior ofmaterials. We know that in fact
every process of loading is a dynamic case involving wave propagation phenomena. After
every loading, disturbances are produced at the place where loading is applied and then
propagate toward other areas in the medium. Then, propagation and reflection ofwaves in
the medium continue until the medium reaches the state of static equilibrium. If the rate of
applying the load is small compared with the velocity ofwave propagation, static equilibrium
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prevails. On the other hand, ifloading is applied at a rate that is fast enough if compared with
the wave propagation velocity, then, we have to consider using wave propagation analysis in
determining the response of the medium. At this stage we could clarify the point with an
example; suppose we have a medium subjected to an external load F(t) applied at point P. We
wish to determine the deformation and the distribution of stresses throughout the medium.

We know that we have different types of waves propagating inside the media such as
dilatational and distortional waves but we also know that the highest velocity is that of the
dilatational wave Ct.. Thus, if the external disturbance is applied at time t=O, the disturbed
regions at times t l and t2 are surrounded by spheres centered at point P with radii <;" t l and
<;" ~. respectively. Therefore, the entire body is disturbed at time, r = r / cL ' where r is the
largest distance within the body , measured from point P. Let us assume that over a time t.
, the loading F(t) has drastically changed. In this case, the dynamic effect are important ift.
and the r/<;", are of the same order of magnitude. If t.» r / cL the problem is quasi-static
rather than dynamic in nature and inertia effects can be neglected. Thus, for bodies of small
dimensions, a wave propagation analysis is called for if t. is small. If the excitation source is
removed, the body returns to rest after a certain time. For excitation sources that are applied
and removed, the effects ofwave motion are important if the time interval of application is
of the same order of magnitude as the characteristic time of transmission of a disturbance
across the body. For bodies offinite dimensions, this is the case for loads ofexplosive origins
or for impact loads. For sustained external disturbances, the effects ofwave motions need
be considered if the externally applied forces are rapidly changing with time.

A very important parameter in wave propagation, is the relative velocity of different wave
types. The velocity of a dilatational wave has the largest magnitude, meantime, the
magnitude ofa Rayleigh wave is less than that ofa distortional wave. The significant point
is that all ofthese wave velocities are functions solely of the elastic constant of the medium,
and, thus, they are characteristics of the mechanical behavior of the medium.

11.6. Study Problems

1. What is meant by an "inelastic wave"? Describe briefly why it is different from an
"elastic wave".

2. Describe briefly the following terms:
Waveguide, node, frequency spectrum, dispersion, and group velocity

3. Derive, in a vectorial form, the expression for the "equation ofmotion", in terms of
the displacement, for an isotropic elastic material.

4. Based on Problem 3 above, derive the "wave equation" for an unbounded isotropic,
elastic medium.
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5. Derive the governing equation of motion for a homogeneous rod with an elastic
modulus E and a constant density p.

6. Solve problem #5 above for an inhomogeneous rod with the elastic modulus varies
as E = Eo (I +x) and a constant density p.

7. Based on Problem 4 above, derive the expressions, in terms of the material elastic
parameters, for both the "dUatationaf' and "rotationaf' wave-velocities. Explain
briefly the difference in physical significance of the two velocities.

8. Based on Problem 7 above, search the values of the material parameters and
determine the magnitudes, of both wave velocities for the following materials:
Aluminum, copper, lead, magnesium, nickel, sUver,tin, tungsten and zinc. Use SI
units, and present your results in a an appropriate table format.

9. What is meant by "rotationaf' and "irrotational' fields ? Use appropriate
mathematical derivations to illustrate your explanation.

10. Explain briefly the difference in physical significance of a "dispersive wave" vs.
"nondispersive wave".

11. (a) What is meant by a "surface wave" ? .
(b) Comment briefly on the validity of the following expression: "Surface waves at a
free surface ofan elastic half-space are nondispersive".

12. Explain briefly the difference in physical significance between "Love" and" Rayleigh"
surface waves, then, Comment on the validity of the expression: "Love waves are
dispersive, as opposed to Rayleigh waves which are not dispersive".

11.7. Problems

The following problems may require some literature search by the student for information
not directly avaUable within the material presented in the context of this Chapter,

13. Comment, with an analytical proof, on the following statement: "The Love waves are
dispersive, as opposed to Rayleigh waves which are not dispersive ",

14, Comment, with an analytical proof, on the following statement: "An elastic wave
reflectedfrom afixed-end bar is entirely unchanged in shape or intensity ".

15. Determine the resulting wave propagation in rod oflength I, which is fixed at one end.
The rod is subjected to a compressive load P; which is then suddenly removed. Plot
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the displacement versus time for the end of the rod. Assume the material of the rod
to be linear elastic.

16. Derive the governing equations and boundary conditions for a plate, as based on
energy considerations.

17. Derive the frequency equation for the natural frequencies of a clamped, circular plate.

18. Determine the expression for the dilatation in the case ofa plane harmonic dilatational
wave propagating in an infinite medium.

19. Derive the frequency equation for pure torsional wave in a composite rod. The latter
is composed of an inner cylinder of radius, which is attached to an outer shell of an
inner radius a and outer radius b. Assume that the shear wave velocity in the inner
cylinder to be greater than that in the shell.

20. A semi-infinite plate has traction-free lateral surfaces on X=± a and a stress-free edge
at y=b. Investigate the reflection of an incident longitudinal plane wave from the
boundary. Also, determine the ratios of the pertaining reflection coefficients for the
various wave components.
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TABLE 11.1. Wave propagation in an isotropic, elastic (unbounded) solid. Pertaining relations in terms of
displacement.

Displacement field u,
General governing equation:

P a2 U
Navier's __ =~V'2U +(A+~)V'V'·u

at 2

Two propagating waves:

Dilatational (Irrotational); (ulR, c,)
Rotational (Distortional); (uR• c2)

Necessary and sufficient relations for the satisfaction ofNavier's governing equation (above):

Necessary but not sufficient relations for the satisfaction ofNavier's governing equation:

Dilatation f!.:
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Rotation w:

w=vxu

Sufficient but not necessary relations for the satisfaction ofNavier's governing equation:

Dilatational (lrrotational)

vxu =0;

Rotational (Distortional)

where L A+21l _ E(I-v)c - -- - __.0.....-----''--_
1 P p(1 +v)(1 -2v)

c/ !lIp

4
K+-Il
3

p
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TABLE 11.2. Wave propagation in an isotropic, elastic (unbounded) solid. Relationships between Navier's
equation and other related governing equations in terms ofpotential.

General governing equation: Navier's

Displacement field u(<I>,"')

Necessary and sufficient relations for the satisfaction ofNavier's governing equation (above):

u ="1<1> + 'V x "'; 'V • '" =0

Necessary but not sufficient relations for the satisfaction ofNavier's governing equation:

4
K+-~

where C2=A+2~= E(l-v) = 3
I P p(l + v)(l - 2v) p

c/ = ~/p
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CHAPTER 12

DYNAMIC PLASTIC BERAVIOUR

12.1. Introduction

In dealing with static plastic problems, we emphasize that the duration ofthe experiment is
long enough so that the occurring deformation in the material can be considered to be "time­
independent".

In a dynamic experiment, however, the time duration is very short, to the extent that a
relaxation phenomenon might occur. In this context, the length of the period of the dynamic
plastic experiment may be compared with the relaxation time of the body considered
(Cristescu, 1967). Due to such viscous flow effect, it is often appropriate to include the so­
called "rate-effects" when dealing with dynamic plastic problems; The magnitude of the strain
rate at which a given material commences to be rate sensitive varies from a material to
another. For a large group ofmetals, this limiting rate ofstrain seems to be JrY sec 0

1
•

In the present chapter, we deal with the plastic response of engineering materials under
dynamic loading, whereby a rate-effect phenomenon might be occur in the material and,
hence, the inertia forces would be included in the equation ofmotion.

The first research contributions in the field of dynamic plasticity include the work ofboth J.
Hopkinson (1872) and B. Hopkinson (1905). Other important contributions in the field were
followed during the period 1930 to 1950 (e.g., Donnell, 1930).

The study of dynamic plasticity is of particular interest in a large number of technical fields,
e.g., high velocity forming ofmetals, ballistics in general, response of soils under dynamic
loads, etc. All such applications have significantly contributed to the development of the
pertaining theory. In this context, the reader is referred to the books, for instance by,
Goldsmith (1960) and Cristescu (1967). Reference is, also, made to Davies (1953, 1956),
Kolsky (1953), Cristescu (l960a&b, 1970, and 1972), Hopkins (1960, 1961), Craggs (1961),
Olszak et al. (1963), and Cristescu and Bell (1970), among others.

12.2. The Dynamic Plasticity Problem

The one-dimensional problem in dynamic plasticity is defined as the one in which, in a strict
sense, one component of the stress and of particle velocity, as well as a single spatial

124
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coordinate are involved. In such case, a one-dimensional stress-strain relation is used. Thus,
as dealt with below, one arrives at a single partial differential equation ofthe first or second
order.

The problem ofpropagation ofelastic-plastic waves in thin rods was the first one-dimensional
problem to have received most attention in the realm ofdynamic plasticity. In this context,
special consideration has been given to the "unloading" aspect of the problem. The latter is
the most difficult point to deal with as only numerical methods have been traditionally
successful in locating the "loading/unloading boundary". In this, the reader is referred to
Ericksen (1955), HiD (1961), Thomas (1961), and Mandel (1962, 1964), among others. For
the study of other categories of one-dimensional problems, e. g., problems that involve
spherical symmetry, but, one component of particle velocity, reference is made to Hunter
(1957), Cristescu (1960 a&b), Goldsmith (1960, 1963), Hopkins (1960), Chadwick (1962),
Olszak and Perzyna (1962), Perzyna (1962), Szczepinski (1964) and Wierzbicki (1963),
among others.

In order to make the transition to more general multi-dimensional problems, one may
consider:

First, those problems in which several components ofthe stress and of the velocity are
involved, but in which there is a degree ofsymmetry so that a single spatial coordinate
is sufficient to describe the motion. Here, one uses a time-independent constitutive
equation that is expressed in a finite form. For such class ofproblems, the number of
equations involved is, in general, manageable, and the problem can be solved without
too much difficulty.

On the other hand, if the viscosity of the material cannot be neglected, the
constitutive equations become time-dependent and are often expressed in a differential
form. Thus, the pertaining dynamic plastic problem becomes more involved.

In the two cases mentioned above, several plastic waves, travelling with variable velocities,
may be involved. These waves could be "couplell' or ''partially couplell'. Such coupling
effect between several waves, propagating with variable velocities, is the fundamental
property that distinguishes plastic waves from ordinary elastic waves. In general, there are
as many plastic waves as components ofthe particle velocity in the problem considered

From the point of view of wave coupling, the constitutive equations may be classified as
''partially coupled" and "coupled' constitutive response equations, with time-dependency
or independency. In a time-independent problem, both the constitutive equation and the
loading/unloading condition are considered to be time-invariant. Difficult mathematical
problems are often involved particularly in the case of time-dependent coupled equations, in
connection with the numerical methods of integration and with establishing of wave
propagation characteristics (e.g., Cristescu, 1967).



www.manaraa.com

126

In order to simplify the difficulties involved in treating generalized problems in
dynamic plasticity, one approach is to consider first those problems which would require a
one-dimensional constitutive relation. An example ofsuch class ofproblems is that concerned
with the propagation ofwaves in extensible strings. In this case, although one constitutive
equation is required, there are two kinds of waves, i.e., "longitudinal" and "transverse ",
which influence one another during propagation.

12.2.1. THE ONE-DIMENSIONAL, TIME-INDEPENDENT PROBLEM

As introduced earlier, the one-dimensional problem is characterized by a single spatial
coordinate. Hence, only single components of stress and strain are considered. Thus, the
propagation of longitudinal stress waves in thin rods or wires is the only possible one­
dimensional situation. In this case, the influence of the shape of the transverse section of the
rod on the propagation of the wave is disregarded, although, the area of this transverse
section is taken into account. The rod, in the one-dimensional problem, is considered to be
slender, so that the lateral inertia would be neglected. This translates into the assumption that
the particles can move freely in the directions transverse to the generatrices of the rod. The
coordinate axis will be chosen with the origin 0 being located at the end of the rod, and the
positive direction of the OX-axis is considered to be directed along the rod, Fig. 12.1.

Y,Y ~,

--.rdx ...-
I
I
I
I
I

o - - - - - ~ - - - - - - - - - - - - - -1- --~X, X

I
L -. U (x, t), a (x, t), E (x, t)

xtt)
Figure J2. J. The one-dimensional problem: A single spatial coordinate is involved, the
influence of the shape of the transverse section of the rod on the propagation of the wave
is disregarded (but, the area of this transverse section enters into the calculations), and
lateral inertia is neglected.
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The loading Problem
Loading. It is defined by the condition that the stress at the end of the rod either increases
continuously, or after increasing up to a certain maximum value, remains constant thereafter.

Following Cristescu (1967), we assume that for t < 0 the rod is at rest, while for t=O the end
ofthe rod is impacted by a rigid body so that for t > 0 the particles ofthe rod are no longer
at rest. We shall assume that the impact occurs in a very short interval of time, so that
buckling ofthe rod would not occur, or at least be negligible. For simplicity, we assume that
the cross section of the rod, which is plane before the impact, remains plane also after the
impact. This translates into the requirement that all the particles in a given cross section of
the rod will displace parallel to the axis of the rod with equal amounts.

With reference to Fig.12.1, we consider an elemental segment of the rod bound, for t=O, by
the cross-sectional planes at X and X + dX. At time t, these planes will have the coordinates
x(t) and x(t)+dx(t), or simply x and x+dx, respectively, where x is the Lagrangian
coordinate (see Chapter 3). Considering at t=O, the cross sectional area ofthe bar is Ao and
the density is Po, whilst the corresponding quantities at time t are A and P, respectively.
Thus:

the conservation ofmass equation is

pA = Po Ao(I + E)

where E denotes the involved measure ofstrain.

the equation ofmotion, for the element dx, is

(12.1)

(12.2a)

whereF(x, t) is the force acting on the cross-section ofthe rod ofa coordinate x at time t.
Equation (12.2a) can be written, alternatively, as

(12.2b)

where u is the displacement and 0 is the stress on the initial cross-sectional area ofthe rod.
We shall adopt the usual convention for the sign of the stress, i.e., positive in tension and
negative in compression. For simplicity, only positive stresses will be considered. Under the
additional assumption that A is constant along the rod, i.e., iJNiJx=O, the equation ofmotion



www.manaraa.com

128

(12.2) can be written as

a2
u =! ao

at 2 p ax (12.3)

the constitutive equation:
In order to proceed with the solution of the dynamic plasticity problem, one must

include the constitutive equation for the material of the rod, at the considered experimental
conditions, and combine it with the equation ofmotion (12.3).

Here, we consider that the constitutive equation of the material, during a dynamic
experiment, can be written in the following finite form

0= f(e) (12.4)

where the function f(e) is usually a monotonously increasing function of the strain e. It is
further assumed that do/de is a monotonously decreasing function of e, e. g., a work­
hardening material, Fig. 12.2. During the entire loading process, it is assumed that the same
constitutive equation (12.4) applies to every cross-section of the rod.

o

o
Figure /2.2. One-dimensionai stress-strain curve for 8 work-hardening material (a typical
response ofmajority of metals): (J = f(e) with f (e) is a monotonously increasing function
of e. do/de is a monotonously decreasing function of e and (J d1o/de1< 0 for any e.
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Combining the constitutive equation (12.4) with the equation ofmotion (12.3), it follows that

a2 u =.!..~ a2 u
at 2 p de ax 2

Equation (12.5) is the equation ofmotion ofthe rod whose response behaviour is described
by (12.4). The equation ofmotion (12.5) is a "quasi-linear equation ofthe second order".
This equation may be, also, expressed in the following format of a ''wave equation offirst
order".

where v =~ is the "particle velocity" andat

Jf*dOc(e)= -­
p de

(12.6)

(12.7)

is the "velocity ofwavepropagation", which is strain-dependent for the case ofplastic wave
propagation, and is governed by the slope of the stress-strain curve of the material. For all
kinds of constitutive equations of finite form (12.4) used in practice, c(E) ~ 0, Cristescu
(1967). Both the equation ofmotion (12.5) and the wave equation (12.6) are "quasi-linear"
equations, i.e., they are linear with respect to the derivatives of the highest order, but their
coefficients depend on the involved functions and their first derivatives.

Characteristics ofthe Equation ofMotion. In order to establish the wave equation (12.6),
it is necessary to determine the so called "characteristics of the system". The latter are
represented by curves in the xOt plane, at the intersection of which v and E are
continuousfunctions ofthe arguments x and t, but, posses discontinuous derivatives.

In addition to the system ofequations (12.6), we consider the following relations (Cristescu,
1967)
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av avdx avdt-"'--+--as axds atds
aE ae dx oed t
-"'--+--
os oxds otds

(12.8)

where the derivatives dx/ds and dt/ds are computed along one of the "characteristic
directions", so that ovlos and oe/os are in effect "directional derivatives" in a characteristic
direction. For the purpose ofbrevity, we denote in (12.8) av I as by dv, etc. Then, this system
ofequations can be written as

ov 0 v
dv"'-dx+-dt

ax ot
ae oeoE=-dx+-dt
ox ot

Combining (12.6) and (12.9), one obtains

~'" c 2 (dvdt-dedx _o_v =_ c 2dedt-dvdx

at -dx 2 +c 2 dt 2 ax -dx 2 +c 2 dt 2

~=dedx-dvdt

ax -dx 2 +c 2 dt 2

which gives the definition of the "characteristics ofthe equation ofmotion" as

dx
-=±C(E)
dt

(12.9)

(12.10)

The differential relations satisfied along these lines are referred to as the "consistency
conditions"; see Cristescu (1967). They are written as

or

dv=±c(e)de (12.118)
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(11.11b)

along the characteristics ~ and Sl> respectively.

The following points may be concluded concerning the analysis presented above,
pertaining to longitudinal wave propagation in a thin rod of a finite constitutive relation of the
type (12.4), and with common boundary and initial conditions:

the wave equation (12.5), or the system (12.6), possesses two distinct, real families
ofcharacteristic lines defined by (12.10).

since (12.5), or (12.6), is quasi-linear, the slopes of the characteristics (12.10) are
variable and depend on the strain function. Accordingly, the characteristics are usually
two families of curves, which can be determined by the solution of the one­
dimensional problem.

the integration ofthe wave equation (12.5), or the system (12.6), is equivalent to the
integration ofthe differential equations (12.11) along the characteristic lines (12.10).

Following the presentation above, one can introduce the following definitions:

A wave. A wave may be defined as the solution ofthe quasi-linear equation ofmotion (12.5),
or, alternatively, the wave equation (12.6), determined within a certain range ofvariation of
the variables x and t, and possessing continuous first and second order derivatives within
this range.

A wavefront. It is the geometrical locus of the points which separate two waves and moves
along the rod with time. Across a wave front, the velocity v and the strain e are continuous,
but their derivatives are discontinuous. Thus, wave fronts coincide with the characteristics
ofthe equation ofthe motion, although, sometimes, some ofthe characteristics may not have
such mechanical interpretation.

An "acceleration wave ". If the first derivatives of e and v are discontinuous across the
wave front, the corresponding wave is referred to as an "acceleration wave", "continuous
wave", "smooth wave" or "weak wave". In this book, we shall adopt the term "acceleration
wave" . The fronts of these waves are travelling discontinuity surfaces for first order
derivatives of stress and for second order derivatives ofdisplacement.
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12.3. Dependence or the Wave Equation and its Characteristics on the Response
Behaviour or the Material

With reference to Eqn. (12.7), the variation of the velocity of wave propagation c, as a
function of the strain e is governed by the slope of the stress-strain curve, i.e., do/de. In other
words, the variation ofC as a function ofe is dependent on the constitutive response of the
material under consideration.

(A) Linear Elastic Material
If the impact at the end of the rod is not sufficiently strong, the stress may not yet

reach the yield point. In this case, the waves generated at the end of the rod are pure elastic
ones. Thus, the stress-strain relation of the rod, in this case, would be still governed by
Hooke's law (Fig. 12.3a)

o=Ee (12.12)

where E is Young's modulus. Recalling (12.7), the velocity of wave propagation is now
constant, i.e.,

(12.13)

o

o
<a>

E

t

o
(b)

x

Figure 12.3. Elastic wave propagation. (a) Linear elastic response, and (b) Wave
propagation characteristics for a linear elastic material: The characteristic field is composed
ofparallel straight lines, whereby the velocity of elastic wave propagation is given by Co '"
IEJp. This translates into the fact that the distance between wave fronts, in a linear elastic
material, is constant. (Adapted after Cristescu, 1967).
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Accordingly, the wave propagation characteristics, in a linear elastic material, take,
in view of(12.10), theform ofparallel straight lines, Fig. 12.3b. This translates into the fact
that the distance between wave fronts, in this material, is constant.

(B) Perfectly Plastic Material
In this case, the stress-strain curve is characterized by do/de = 0, Fig. 12.4. Thus, in

view of(12.7), c (e) = 0, and "there is no wave propagation in the perfectly plastic rod".
This also happens ifcertain portions ofthe stress-strain diagram are parallel to the strain axis.
Thus, in these intervals, the wave considered can no longer propagate.

o
do/de=O

L------------.. eo
(a)

t

(b)
x

Figure 12.4. Perfectly plastic material: No wave propagation and, thus, no field of
characteristics exist in such material; i.e., c (e) = O.

(C) Work-hardening Material
For most metals, for instance, the stress-strain curve takes the form shown in Fig.

12.2, where 0 d2o/de2 < 0 for any e. Substituting this condition ofbehaviour into expression
(12.7), it can be easily shown that the wave propagation velocity c (e) decreases when the
stress increases, i. e., dc/de < °for any de > O. Thus, if one assumes that due to the impact,
the stress at the end ofthe rod, ofa work-hardening material, increases continuously, then,
the waves generated successively at the end of the rod will propagate with continuously
deceasing velocities.

Furthermore, for such materials, the corresponding wave fronts will be represented in a
characteristic plane xOt by a divergent family of curves, whose slopes dt/dx will increase
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with the decrease ofthe wave propagation velocity, in view of(12.10), i. e., with the increase
of the stress.. This illustrated in Fig. 12.5.

Thus, the distance between the wave fronts, for a work-hardening material, will
increase during their propagation, i. e., the waves will spread

(0) Materials Governed by Other Stress-Strain Relations
In this category, we consider the following classes ofmaterials

(i) Materials whose stress-strain curve takes a form similar to that illustrated in
Fig. 12.6 a, i. e., for which the slope increases continuously, 0 d2o/de2 > 0 for
anye.

Such condition may be representative ofthe response behaviour of particular classes
ofrubbers, soils, and metals. For such classes ofmaterials, since the slope of the stress-strain
curve increases continuously, the velocity of propagation will increase when the stress
increases, i.e., dc/de> 0 for any de> 0, Eqn. (12.7). Meantime, near the end of the rod, the
distance between the wave fronts decreases during propagation, as the slope dt/dx ofthe
representative characteristics decreases, Eqn. (12.10). This is illustrated in Fig. 12.6b. In this
case, there is a tendency for wave fronts to be formed.

o

0= f(e)

e

Divergent family of characteristic
lines, whose slopes increase with
the decrease of the wave
propagation velovity.

x
Figure J2.5. Wave propagation in a work-hardening material (typical response of majority
of metals). (a) One-dimensional stress-strain curve; o=f (e) with f (e) is a monotonously
increasing function ofe, do/de is a monotonously decreasing function of e and 0 d' o/de'
< 0 for any e. (b) Field of characteristics: Divergent family of characteristic lines whose
slopes dtldx increase with the decrease ofthe wave propagation velocity.
(Adapted after Cristescu, 1967).
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t

(ii)

o

Materials whose stress-strain diagrams take a form similar to that shown in
Fig. 12.78, whereby the curvature of the stress-strain curve changes at a
certain point.

In this case, the wave fronts will first diverge (dc/de < 0), and then converge
(dc/de>O). This is illustrated on the plane of characteristics shown in Fig. 12.7b.

The distance between the wave
fronts decreases during
propagation as the slope dt I dx
ofthe representative
characteristics decreases.

o

The slope of the stress
strain curve is
continuously increasing.

(a)

E o
(b)

Figure J2.6. (a) A representative of stress-strain curve of soft material (e.g., various classes
of rubbers, soils and metals): a d'alde' > 0 for any e. (b) Field of characteristics
corresponding to (a): Divergent family of characeristic lines; dc/de> 0 for any de > O.
(Adapted after Cristescu, 1967).

Characteristic lines converge.
I

o

0= fIE)

E x

Figure J2.7. (a) A stress-strain curve of variable concavity. (b) Characteristic field
corresponding to (a): A convergent family of characteristic lines, with the possibility of
forming shock waves. (Adapted after Cristescu, 1967).
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Summary
(i) Assuming that the constitutive equation of the material can be written in a finite form

(12.4), then, the motion is governed by the second-order equation ofmotion (12.5),
or by the first-order wave equation (12.6). As mentioned earlier, both are "quasi­
linear" equations, i.e., they are linear with respect to the derivatives of the highest
order, but their coefficients depend on the involved functions and the first derivatives
of these functions.

(ii) The equations, referred-to under (i) above, are of the "hyperbolic type", i. e., either
equation will result, for each value of the wave propagation velocity c(e) in two
distinct characteristic lines in the characteristic plane xOI.

(iii) Since the equations are quasi-linear, the characteristics will generally be curves with
variable slopes. These slopes can be determined by the solution of either of the two
equations (12.10). Thus, these curves cannot be drawn a priori, but only when the
solution of the problem is known. Such solution will depend on the initial and
boundary conditions, together with the explicit expression of the constitutive
expression (12.4); see Cristescu (1967).

EXAMPLE 12.1

We consider in this example an initially undeformed, semi-infinite bar at rest. This case is
presented by Cristescu (1967) after Rakhmatulin (I 945a&b).

Initial conditions:

t = 0 and x> 0:

Boundary conditions:

(x, 0) = v(x, 0) = (x, 0) = 0 (12,14)

x = 0 and t ~ 0: e (0, t) or o(O,t) or v(O, t) are prescribed (12.15)

The initial conditions (12. 14) are satisfied in the region D ofFig. 12.7, while the characteristic
line OA represents the first wave front propagated along the rod. A solution can be obtained
by integrating the relations (12.11) along the corresponding characteristic lines. These
relations then become

v =Jc(e)de + kl =w(e) + kl (S2)

v = - Jc (e) d e + k2 = - W(e) + ~ (Sl)
(11.16)
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where the parameters kl(~) and k2(s.) have different constant values on different
characteristic lines and are called "Reiman invariants".

With reference to (12.16), all the characteristics of negative slope intersect the characteristic
line OA and, hence, commence from the undisturbed region 0.. It follows then that all the
constants k2 = 0, and throughout the region O2, the relation between the velocity and the
strain is

\1=-'P(e) (12.17)

Substituting (12.17) into the first relation of (12.16), one concludes that both v and e are
constant along the characteristics of positive slope. Accordingly one arrives at the following
important conclusion:

When some constant initial state is prescribed, the characteristics ofpositive slope are a
family ofstraight lines. The equations ofthese straight lines can be expressed in the form

x = c (e(t'»(t - t ') (12.18)

where 1" is the time at which the straight line intersects the time-axis, as shown in Fig. /2. 7.
The slope ofthis straight line is computedfor these values of 1", i.e., using the boundary
conditions. The propagating waves, corresponding to this situation, are called "simple
waves".

It should be emphasized, however, that the above conclusion is valid only ifa constant initial
state is prescribed, otherwise, the characteristics of positive slope will be, in general, curved
lines in the characteristic plane xOt. Thus, simple waves may appear only in a region
adjacent to a constant state region.

One may fhrther describe the strain at the end of the rod in terms of the time parameter t",
e. g.,

e = e (O,t ') (12.19)

then, by eliminating the time parameter t" between (12.18) and (12.19), a functional relation
which defines e in terms of x and t is obtained (Cristescu, 1967).

12.4, The Problem of Instantaneous Impact

Karman and Ouwez (1950) considered the special case where the strain was assumed to be
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a function of the ratio xlt, but not ofx and t independently. Thus, from equation (12.17), it
follows that the velocity is also a function only of the same ratio. Accordingly, the equation
of the characteristic lines (12.18) now becomes

x = c (e) t (12.20)

The characteristics ofpositive slope, that correspond to (12.20) pass through the origin. This
is the case of "instantaneous loading", and the corresponding simple waves are referred to
as "centred simple waves".

Karman and Duwez (1950) considered the following boundary conditions:

u =VI t for x =0 and t ~ 0 (12.21)

where VI is the constant velocity of impact. These authors sought then different particular
solutions which would depend only on the ratio xii and satisfy the equation ofmotion (12.5),
the initial conditions (12.14), and the boundary conditions (12.15). They arrived at the
following particular solution

(12.21)

where ci is an undetermined constant with the dimension of velocity. It is easy to recognize
that the strain corresponding to (12.22) is constant, i.e.,

(12.23)

In order to find a particular solution to the above problem, in which the strain is a function
of the ratio xlt only, i.e.,

€ = f(x/t) = f(~) (12.24)

the function f(~) is determined by the condition that the equation ofmotion (12.5) must be
satisfied. Following Cristescu (1967), the displacement is obtained from

~ du
U=[«d~

Further, using the relation
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au du a~ 1 du-=--=--ax d~ ax t d~

one obtains

(12.25)

Using the relations

together with the equation ofmotion (12.5), one arrives at

(12.26)

Accordingly, under the assumption (12.24), one arrives at the following two particular
solutions:

(i) the particular solution (12.22) which results from f .(~) =0, and corresponds to a
constant strain E, and to a constant velocity ofimpact VI'

(ii) the particular solution that is obtained from

(12.27)

Based on the constitutive equation (12.4), whereby (12.24) is also applicable, the full solution
of the problem of instantaneous impact was obtained by Karman and Duwez (1950), see
Cristescu (1967), as a combination ofthe two particular solution mentioned above:

(a) for x> Co t : E = 0

(b) for c, t < x ~ Co t, the relation (12.26) is satisfied, where c, is the velocity of
propagation of the plastic wave which carries the maximum strain E.

(c) for 0 < x ~ c, t, the strain is constant and is equal to E •.
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Thus, in the problem of instantaneous impact on a rod, of material specified by the
constitutive condition (J2.4), Figure J2.2, the first elastic wave front propagates with a
constant velocity co' The last plastic wave front propagates with a constant velocity
c1 = c((1). Between these two waves, there is a set ofother plastic waves, whose wave fronts
are represented as an array of straight lines emitted from the origin of the plane of
characteristics. Each ofthese waves propagates with a certain velocity C(E), where
c1<c (E) < co' Accordingly, the sudden impact, i.e., the sudden increase ofstrain at the
end of the rod, is transmitted along the rod in the form of "centred simple waves", which
bring about a smooth variation of the strain at any other cross-section of the rod. This
conclusion is valid for thin rods made of materials whose stress-strain curve is of a
continuously decreasing slope.

In order to determine the velocity c. and the strain E. as functions of the velocity of impact
v., one combines equations (12.22) and (12.25) for the end of the rod to arrive at

o
VI = U (0, t) / t = - f f(~) d ~ (12.28)

The integral of(12.28) represents an area which may be also calculated using the expression

£, £1

v, = - f ~ d E = - f C (E) d E
o 0

(12.29)

Expression (12.29) establishes a correspondence between the maximum strain E. and the
velocity of impact v•. Such relation is of significance in mechanical design applications that
involve impact loading.

Ifthe stress-strain curve possesses a linear elastic range, then in this domain, all corresponding
wave fronts generated by a sudden impact, will run together. In this situation, the first wave
front will produce a sudden jump of the strain from E=O to E=Ey.

If the impact at the end of the rod is of a small intensity and the stress is within the elastic
range, i.e., 0 < 0y, then the velocity of the wave propagation is constant, co. which is given
by (12.13). Meantime, one can write that

and, by recalling Hooke's law, it follows that

0= E E = P V Co

(12.30)

(12.31)
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Thus, if the loading of the rod is instantaneous, there will be two regions:

ro fur x>~~ O=E=V=~

(ii) for 0 ~ x ~ Co the stress (0 = P VI co) and the strain (EI = vII co) are constant.

Thus, in this case, there is a sudden increase of stress, strain and velocity when the wave,
travelling with velocity Co , reaches the corresponding section of the bar.

12.4.1. THE UNLOADING PROBLEM

When the stress at the end of the bar begins to decrease after having increased, unloading
starts. During this phase, the fonnulation of the theory ofwave propagation is different from
that during loading for the material specimen under consideration. In many situations, after
having increased, the stress at the end ofthe rod decreases to zero. Further, a succession of
loading-unloading processes might occur quite often.

The Unloading Constitutive Equation
For a large group of elastic-plastic materials, especially metals, the unloading process is a
perfectly elastic one. Thus, it is appropriate to use the following constitutive relation during
unloading

o = om (x) + E [E - Em (X) ] (12.32)

where, for each cross-section x of the rod, 0 1 (x) and EI (x) are the maximum stress and
strain, respectively. It should be noted that for finite constitutive equations, such as (12.4),
both the maximum stress and the maximum strain are reached at the same moment in a given
cross-section ofthe rod.

For an elastic-plastic material, however, the unloading problem is more difficult to deal with
than the loading problem. This may be reasoned as follows:

In each cross-section of the rod, the unloading process commences at a different
maximum stress om (x) and a different maximum strain Em (X). In other words, for
each section of the rod, a different constitutive equation (12.4) must be employed.

Further, at the transition between loading and unloading, one must replace the loading
constitutive equation (12.4) by the unloading constitutive equation (12.32).

The Loading/Unloading Boundary. The loading/unloading boundary is defined as the
geometrical locus ofpoints in the characteristic plane xOt, in which the maximum strain has
been reached in each cross-section of the rod. Thus, the loading process occurs below, and
the unloading process occurs above this curve (locus). The shape of the loading/unloading
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boundary depends on the constitutive response of the material, the boundary and the initial
conditions. Consider the case when the loading I unloading boundary is represented by a
general line below which, is the domain where plastic strain increases, whilst, in the domain
above the loading/unloading boundary, the plastic part of strain is constant. This gives for
loading/unloading conditions, respectively, the following definitions:

00 >0
at

00 0
-~at

for loading, i.e.,

for unloading, i.e.,

aEP >0
at '

aEP
-=0at

(12.338)

(12.33b)

Depending on the boundary conditions, the loading and unloading boundary may be
sometimes formed as an area. In other words, this boundary is not always a curve in the
characteristic plane "xOt".

Assuming that the equation for the loading/unloading boundary, in the characteristic plane
"xOt", can be written as

t = f(x) (12.34)

(which is not known a priori), one may visualize the solution of the problem in a certain
cross-section x of the rod as follows: When a time t = xlco has elapsed since the beginning
ofthe impact at the end of the rod, the first elastic wave reaches the mentioned section. From
this moment onwards, the strain increases continuously until t =f (x), when the first unloading
wave reaches this section. Then, the elastic strain decreases to zero. Thus, for a given
material, the strain increases and then decreases depending on the boundary conditions, and
also on the maximum strain previously reached.

The Equation ofMotion in the Unloading Domain
Combining equations (12.3) and (12.32), the equation of motion during unloading can be
written as

(12.35)

where Co is the constant velocity ofpropagation. Eqn. (12.13). In(12.35), om and Em depend
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only on the coordinate x. Thus, it is necessary to determine the solution in the unloading
domain simultaneously with the solution in the loading domain, in order to find am (x) and
Em (X). Meantime, the shape of the loading/unloading boundary can be found only by finding
a solution to the problem which satisfies the initial and boundary conditions in the loading and
unloading domains simultaneously.

The general solution of(12.35) is

1 x
u = F, (co t + x) + F2(co t - x) - E f (am - E Em) d x

o
(12.36)

where FI and F2 are arbitrary functions to be determined by the boundary conditions at the
end of the rod and the loading/unloading boundary.

Meantime, the characteristics of(12.35) are

dx/dt = ± Co

with the following differential equations being satisfied along these characteristics

1
dv=±-do

PCo

(12.37)

(12.38)

This is with the understanding that the upper and lower signs in (12.37) and (12.38)
correspond to each other.

The shape of the loading/unloading boundary can be determined by graphical-analytical
methods or, alternatively, by numerical methods. However, in the particular case of a linear
work-hardening material under sudden loading, the shape ofthe loading/unloading boundary
may be known a priori (Cristescu, 1967).

The loading/Unloading Boundary. Linear Hardening Material under Sudden Loading.
In this particular case, there are only two wave fronts, namely, x = Co t and XI = c.t. The first
is the elastic wave front across which the strain jumps from zero to Ey• The second front is
the plastic wave front. The latter must pass through each point of the loading/unloading
boundary. This boundary must coincide with the straight line XI =c. t. The referred-to line is
the plastic wave front which is characterized by a constant strain. On the other hand, it is a
loading/unloading boundary along which the strain decreases. Accordingly, this line has
contradictory properties. In fact, this line is an idealization ofa bundle of parallel straight lines
representing plastic wave fronts, the distance between them being very small (Cristescu,
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1967).

12.5. Determination of the Loading/Unloading Boundary

As we mentioned earlier, there is no exact analytical method for determining the
loading/unloading boundary. To overcome this problem, two alternative methods have been
introduced in the literature. These are the graphical-analytical methods and the numerical
methods.

12.5.1. THE GRAPHICAL-ANALYTICAL METHOD.

This method is presented in detail by Cristescu (1967). It can be applied to sufficiently long
rods (no reflections), initially at rest and undeformed. The rod must also have homogeneous
mechanical properties. In addition, the method is only applicable to the case of single loading.

Within the context of the graphical-analytical method, in order to determine the distribution
of the plastic strain after impact, one must first establishes the variation of the stress om (x)
along the loading/unloading boundary. Meantime, the plastic strain may be obtained using the
formula

eP(x) =(0 (x) - 0 (_1 -J..)
m Y E E

t

In this case, the maximum strain is obtained at the impacted end of the rod.

12.5.2. THE NUMERICAL METHOD

(12.39)

This method is based on numerical integration along a network of characteristic lines. The
following relations are often employed.

In the loading domain, the characteristics and the differential relations satisfied along them
are

dx =±c(o)dt,
do

dv=±--
P c(o)

(12.40)

The corresponding expressions in the unloading domain are



www.manaraa.com

do
dv=±-

P Co

145

(12.41&42)

The loading/unloading conditions, for 0 ~ 0y, are:

~>O
at

~=O
at

~<O
at

during loading (when aa~p >°1
on the loadioglunloading boundary (When 00~ = 01

during unloading (when aa~p <°1

(12.43)

EXAMPLE 12.2

This example is taken from Cristescu (1967).
In this example, the following non-dimensional quantities are used:

- xx=--,
c. T

- t
t =­T' (12.44)

Boundary conditions:
The boundary conditions are chosen in the form

- -
o=-4t(I-t)-1

Initial conditions:
The initial conditions are selected to be

t=O, x>O: 0=-1, e=-I, v=o

Constitutive equations (linear work-hardening Material):
In a non-dimensional form, the constitutive equations are:

(12.45)

(12.46)

During loading; (12.47a)
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During unloading; (; =(;m(x) + e - em (x) (12.47b)

In the non-dimensional ~ 0 t plane, the characteristic network in the loading domain is
CO!!structed with t1 x=t1 t =0.02, while in the unloading domain one still has t1 x= 0.02 but
t1t = (c./co )t1x.

In the solution of the above problem, a difficulty might arise during the transition between the
loading domain and the unloading one, as this would involve changing the network of
characteristic lines along which the integration is performed during computation. The loops
of the two networks are regular, except for those which lie on the loading/unloading
boundary. If the solution is computed in the unloading along a characteristic line ofpositive
slope, then at a certain moment, when passing from one loop to the following one, one must
estimate the moment at which the loading/unloading boundary crosses the side of the loop
(Cristescu, 1967).

Figure 12.8 (Cristescu, 1967) shows the loading/unloading boundary for the present example,
as determined using equations (12.45), (12.46) and (12.47) above. As illustrated in the figure,
the loading/unloading boundary propagates up to x= 1.68. In other words, the portion of the
rod for which x> 1.68 remains in an elastic state. The variation ofthe stress at various sections of
the rod. both during loading and unloading are presented in Fig. 12.9.

The variations of the maximum stress and of the plastic strain along the loading I
unloading boundary are presented in Figures 12.10 and 12.11, respectively.

The numerical method can be applied for any initial and boundary conditions as well
as for any mechanical properties ofthe material that can be represented by a finite constitutive
equation. In addition, the method can be applied if the rod is either semi-finite or finite. In
other words, provision can be made in this method for taking into account the effect of the
reflected waves on the direct waves and on the loading/unloading boundary, see Cristescu,
1967.

12.5.3. SPECIAL CASE: THE PLASTIC I RIGID SOLUTION

In various problems of plasticity theory, it is possible to neglect the elastic strain in
comparison with the plastic one. In this case, the material, introduced earlier in Chapter 7,
is referred to as "plastic/rigid'. The propagation of longitudinal waves in thin rods made of
such material was studied by Taylor (1948), Lee and Tupper (1954), among others. They
considered the situation when a short steel rod makes an impact with a rigid surface, e.g.,
with a thick armour plate.
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Figure 12.8. The loading/unloading boundary using the numerical method. "Reprinted
from Cristescu, N.! Dynamic Plasticity. 1967. pp. 48, with kind pennission from Elsevier
Science· NL. Sara Burgerhartstraat, lOSS KV Amsterdam. The Netherlands".
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Figure 12.9. Stress profiles as obtained using the numerical method. "Reprinted from
Cristescu. N. ! Dynamic Plasticity. 1967, pp. 49. with kind pennission from Elsevier
Science - NL. Sara Burgerhartstraat. lOSS KV Amsterdam. The Netherlands".
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Figure 12.10. Maximwn stress profile. "Reprinted from Cristescu, N. IDynamic Plasticity.
1967, pp. 49, with kind pennission from Elsevier Science- NL, Sara Burgerhartstraat, 1055
KV Amsterdam. The Netherlands".
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Figure 12.11. Plastic strain profile. "Reprinted from Cristescu, N. IDynamic Plasticity.
1967, pp. 50, with kind pennission from Elsevier Science· NL, Sara Burgerhartstraat, 1055
KV Amsterdam. The Netherlands".
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The assumption that the material is plastic/rigid is equivalent to the fact that there are two
regions in the rod during wave propagation. The first region, where the plastic wave has not
yet passed through, will move as a rigid body towards the fixed target with a velocity u.
Meantime, the plastic wave front propagates away from the impacted surface with a velocity
v. Applying the conservation ofmass principle, one obtains

(u + v)Ao = vA (12.48)

where Aa is the initial cross sectional area ofthe rod. Thus, the strain after the plastic wave
front has passed may be expressed as

E = (A - Ao ) / A = u / (u + v) (12.49)

Meantime, ifx denotes the length ofthat part of the rod which has not yet been disturbed at
the time I, one has

-dx/dt=u+v (12.50)

Further, applying the law ofconservation ofmomentum across the wave front, one has

(12.51)

where Oy indicates the stress before the shock wave has reached the point under
consideration. Thus Oy represents the yield stress of the plastic/rigid material; as it is
understood that the elastic stresses propagate instantaneously in this material.

The equation ofmotion ofthe moving rigid part of the rod is written as

pxdu/dt = -Oy

Combining (12.49), (12.50) and (12.52), it follows that

Further by combining (12.49), (12.51) and (12.53), one obtains

(12.52)

(12.53)
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2 fO d [(0 - 0y)e]
~n x =

E 0y
°1

(11.54)

(11.55)U=

where o. is the maximum stress, corresponding to the moment of impact. Denoting the
velocity ofthe rod at the moment ofthe impact by U. The latter can be expressed, in relation
to the stress 0 .. by combining (12.49) and (12.51 ), as

€. (0. - 0y)

p

in which E. is the maximum strain corresponding to the stress 0 •.

Following Cristescu (1967), one may use the notation

(11.56)

thus, the relation (12.54) becomes

@nx 2 = f(o) - f(o.) (11.57)

Accordingly, since the stress-strain relation is assumed to be known, the expression
represented by the function fl:o) may be easily detennined from (12.57). Thus, the distribution
of the plastic strain can also be obtained.

11.6. Plastic Shock Wave

It is a "strong discontinuity wave", the fronts ofwhich are surfaces of discontinuity even for
stress and first order derivatives ofdisplacement. In this case, the propagating wave is termed
"shockwave", "weak shock wave" or "wave olstress discontinuity" or "stress discontinuity
wave". In our presentation, however, we shall use the term "shock wave".

In this section, we consider only velocities of impact much smaller than the velocity of
propagation of the waves, i. e., the particle velocity is assumed to be much smaller than the
wave propagation velocity. Again we consider only one component of the stress and velocity,
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and we assume that the density ofthe material to be constant. All dissipative factors, such as
lateral inertia. rate effects, thermal conduction, etc. will be again disregarded in the present
section. Such dissipative factors oppose the formation of shock waves, or decrease the
abruptness ofthe jump (Cristescu, 1967).

Two possibilities may be envisaged for the development ofplastic shock waves in a solid rod:

I) Plastic shock waves may be produced by a sudden impact at the end of the rod, e.g.,
an explosion or impact with a rigid body. In this case, a bundle of smooth waves with
non-diverging fronts may be present. The latter can be however approximated, at the
limit, by a propagating shock wave. This is the case most often considered in the
literature when shock waves are considered.

II) Plastic shock waves may also be developed due to some particular property of the
material of the rod, and/or its particular constitutive equation. In such case, the
distance between the wave fronts ofsmooth waves propagating in the rod decreases
during propagation. There is then a tendency for the wave carrying the largest strain
to overtake the others. Such situations may occur, for instance, if the stress-strain
curve is concave towards the direction of the increasing stress, or alternatively, if
certain parameters such as temperature, hydrostatic pressure, etc., might produce a
similar effect.

Equations ofMotion
As mentioned above, a group of smooth plastic waves may have the tendency, during
propagation, to form a shock wave, even if the loading at the end ofthe rod is not sudden.
In this case, the shock wave front does not generally coincide with the envelope of fronts
pertaining to the propagating smooth waves. This is due to the fact that across the wave front
certain jump conditions must be satisfied. Here, the shock wave front may be obtained from
the condition that the jump relations, together with the conditions in front and behind the
shock wave front are satisfied.

For the purpose of establishing the equations of motion in Lagrangian coordinates, one
considers, following Cristescu (1967), a thin rod moving with a velocity v and initially
possessing a uniform strain E. We assume that the rod is in tension, hence, the stress and
strain are taken as positive.

At time t, a given section x of the rod is reached by the shock wave front. We shall denote
the velocity ofpropagation of this front by c, with a sense towards the positive direction of
the positive Ox- axis. When this front has passed, the particle velocity of the material will be
v + [v] and its strain will be e + [e].

A superscript "minus" sign will be used to denote the value ofa certain function on the shock
wave front on the side not yet perturbed, and a superscript "plus" sign to designate the value
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ofthe same function, at the same point on the shock wave front, but on the other side, which
has already been perturbed. During an interval t, the displacement u will vary across the
shock wave front either by (~u) - =v - ~ t + e - ~ x or by (~u) + =v + ~ t + e + ~ x
depending on which side of the front is considered.

Thus, the "condition ofdiscontinuity ofdisplacemenf' yields the kinematic condition:

[v] = - c[e]

since

(~u) - = (~u) +

Meantime, the "momentum equation" gives the following dynamic condition

cp[v]=-[o]

(12.58)

(12.59)

Equations (12.58) and (12.59), together with the constitutive equation of the material of the
rod are sufficient for the study of the propagation of shock waves in a thin rod. Equations
(12.58) and (12.59) are known as the "Hugoniot relationhips", their forms are very similar
to the differential equations satisfied along the characteristic lines.

The theory of shock waves, which uses only equations (12.58) and (12.59), considers the
process to be adiabatic, and disregards the variation of the internal energy as a result of the
impact. This theory is often called "the elementary theory ofshock waves". The dealt-with
shock waves in this case are referred to as "weak shock waves".

On the other hand, when the impact velocity or the jump in the applied pressure is very high,
the variation of the internal energy or temperature cannot be neglected. In this case, the
considered shock waves are referred to as "strong shock waves".

Combining equations (12.58) and (12.59), one obtains the velocity of propagation of the
shock wave as

c = ~ .!. [0)
p [e)

(12.60)

This velocity ofpropagation does 110t generally coincide with the velocity ofpropagation of
smooth plastic waves. This happens onlyfor those portions ofthe stress-strain relation which
are linear. In particular in the elastic range, the velocity (I2. 60) coincides with the constant
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elastic velocity ofpropagation c~ where equations (J2.58) and (J2.59) for c = Co are well
known in elasticity theory.

In equations (12.58) - (12.60), a plus or minus sign must be associated with the velocity of
propagation c, depending on the direction in which the wave propagates. This system of
equations have been applied extensively in the literature. This is essentially due to the fact that
computations using this system of equations are much simpler than the corresponding
equations associated with a smooth wave propagation problem. That is, one has to solve an
algebraic system ofequations, instead ofa system of partial differential equations, see, e. g.,
White and Van Griffis (1947, 1948) and Cristescu (1967).

Rods with Variable Yield Stress
The propagation of longitudinal waves in bars with variable yield stress was considered by
Rakhmatulin (1946, 1950); see Cristescu (1967). In this work, it is assumed that initially the
rod possesses the same yield stress value at any of its cross-sections, but after a longitudinal
impact at one of its ends, its yield stress varies along the rod, i.e., as a function of the
longitudinal coordinate of the cross-section x.

Thus, each impact which produces a plastic strain would modify the yield stress ofthe part
of the rod which is plastically deformed by that impact In this context, the following two
situations may arise:

a) if the previous impact was applied at the same end of the rod, the yield stress
decreases along the rod.

b) if the previous impact was applied at the opposite end, the yield stress increases
along the rod.

Constitutive Equations. Denoting the variable yield stress, along the axis of the rod, by Oy

(x), the following stress-strain relations can be written

o = E E for E < 0y (x)
o - 0y = g (.) for E > Ey (x)

where g is a function ofthe argument (E - Ey).

Equations ofMotion. In this case, the velocity ofpropagation c depends on the argument
(E - Ey) • It is expressed as

(12.62)
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Meantime, the resulting equations ofmotion are

for
(12.63)

The characteristics ofequation (12.63) are given, and the differential relations satisfied along
them are expressed, respectively, as

2 2 dE
dx=±cdt, du =±cdu +[c -c ]-Ydt

I x 0 d x (12.64)

Rakhmatulin (1950), see Cristescu (1967), presented the following description of wave
propagation for the case when the yield stress of the rod increases.

The first elastic wave front will propagate with a constant velocity co, and the last one will
propagate with a variable velocity. In the characteristic plane, the domain of elastic
deformation is separated from the domain of plastic deformation by the boundary x = f(t).
Across this boundary, the second derivatives of the displacement suffer discontinuities. On
the boundary itself, the strain is Ey (x).

Using the characteristics (12.64), Rakhmatulin (1950), see Cristescu (1967), gave a method
ofdetennining approximately the boundary x = f (t). Meantime, the solution of the problem
in the unloading domain is similar to that for homogeneous rods.

Rods with Non-Homogeneous Mechanical Properties
A more general problem is the propagation of longitudinal waves in rods possessing non­
homogeneity related to various mechanical properties, e. g., variations, as functions of
coordinates, in, e.g., the elastic modulus, yield point, work-hardening modulus and density.
In general, the rod might have a stress-strain response behaviour that varies from a point to
another within the rod.

The propagation, in elastic rods, ofwaves which gradually change the elastic properties was
considered by Juhasz (1949). Meantime, the propagation oflongitudinal waves in rods which
are both elastically and plastically non-homogeneous was studied by Perzyna (1962). Here,
the stress-strain relation is of the form 0 = f(e, x). For example, in the case of linear work­
hardening material, this relation becomes:
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For loading:

C1 (x, t) = b(x) E (x, t) + [a (x) - b (x)] Ey (x)

E (x, t) S Ey(x)C1 (X, t) = a (x) E (x, t) for

for E (x,t) ~ Ey(X)
(12.65)

For unloading:

C1 (x, t) = C1 (x) + [E (x) - Ey (x)] b (x) - [Em (x) - ~ ] a (x)
y m ax (12.66)

where, in the above two expressions, a(x) and b(x) are material parameters which are x­
dependent,

Meantime, the equation ofmotion can be written in the form

P (x) 02 u(x,t)/ot 2 =aC1(X,t)/ox

The reader is referred, in this context, to Cristescu, (1967) and Olszak (1959).

(12.67)

(12.68)

Bars with Variable Cross-Section
Here, the problem of the propagation of elastic-plastic waves in semi-infinite rods with
variable cross-section is considered as one-dimensional with the same assumptions as given
earlier. Denoting the variable cross-sectional area of the rod by A(x), the following equation
ofmotion, for the case ofa linear work-hardening material, can be written

oC1 A' (x) 02 U
-+--C1=p--ax A(x) at 2

Cristescu (1967) presents the boundary conditions pertaining to this case as follows:

Initially the end of the rod is subjected to a sudden pressure, which subsequently continues
to increase. It can accordingly be assumed that the first elastic and plastic wave fronts are
strong discontinuity fronts which propagate with velocities Co and cl , respectively. Combining,
along these fronts, the differential relations satisfied along the characteristics and the condition
of continuity of the displacement, one obtains the law of variation of the strain along these
lines. Beyond this point, in the loading domain, the characteristic method is suggested.
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12.7. Dynamic Plasticity under a State of Combined Stress

We consider in this section the problem of dynamic plasticity under the effect of combined
stress as was treated by Cristescu (1965).

12.7.1. THE PROBLEM

Cristescu (1965) considered a thin walled tubular specimen of initial length @o. The end x =
@o of the tube is assumed to be fixed, while the other end x = 0 is put dynamically into a
combined motion: a tension and a torsion. This motion of the end section x = 0 of the tube
is transmitted along the tube by intermedia ofwaves. This mechanism ofpropagation was
analysed by Cristescu (1965) for several kinds of constitutive equations, in order to give the
possibility to choose the appropriate constitutive equation which may be used for a certain
material specimen under specific loading conditions.

In the analysis, presented below, cylindrical coordinates of reference x, r, eare used, whereby
the Ox- axis being directed along the symmetry axis of the tube. The components of the
displacements in the axial and circumferential directions are denoted, respectively, by u and
v. Due to the small thickness ofthe wall of the tube, the components 0,., 0"" ora are assumed
to be small and negligible by comparison with 0"" and 00.' Meanwhile, the entire problem is
considered to be axisymmetrical, so that all derivatives with respect to ewould be considered
to be zero (a / ae = 0). Due to this last assumption and as the radial motion is disregarded,
the single coordinate which is involved in computation is the axial coordinate x. The analysis
aims at the determination of the rotation ofvarious transverse sections of the tube.

Equations ofMotion
Using the assumptions mentioned above and taking into account that only two stress
components are assumed to be different from zero (these will be denoted by
Ott =° and 06x =t), the equations ofmotion are

a° aUt-+X =p-ax x at
at aUt
- +Xo=p-ax at

where Xx and Xe are body forces components, p is the density and u. and Ut, whereby the
subscript t refers to the derivative with respect to time, are the components ofthe velocities
(deformation rates) in the axial and circumferential directions.

Strain-Displacement Relations
Denoting by u, U and w the displacement components in the x, e and r directions,
respectively, and taking into account the assumed axial symmetry, the strain components may
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be expressed as

(12.70)

Out of these strain components, two components are dominant, namely EJDl and E"". These
components are denoted in the analysis by E and y, respectively.

The first invariant of the strain tensor is

Err + EOO + ExxE =--'-'-""';";;--':';';;;
m 3 (12.71)

while the second invariant of the stress deviator is, for the case under consideration,

12' =.! 0 .. 0 .. = 0
2

+ 1;2.
2 IJ IJ 3

where 0' ij are the components of the stress deviator.

(12.72)

Two particular motions corresponding to two specific sets of boundary conditions are
considered.

The first case corresponds to a uniaxial longitudinal compressive motion, by the
assumption that everywhere U = O. In this case, the system of equations (12.69)
reduces to a single equation ofmotion

00 aUt-+x =p­ax x at (12.73)

(12.74)

The other particular case corresponds to u = 0; then, instead of(12.69), one has

at aUt
-+Xo=p­ax at

which describes a uniaxial shearing motion.
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The Constitutive Equations
In order to express the constitutive equations, one assumes that the strain-rate components
can be decomposed in an elastic component and a plastic one, i.e.,

(12.75)

where e'Uare the rate of strain deviator tensor. The elastic part of the strain rate is assumed
to satisfy the Hooke's law, i.e.,

(12.76)

and

(12.77)

where o'ij are the components of the stress deviator, am is the mean stress and G and K are
the elastic constants; namely the shear and bulk moduli, respectively.

Concerning the plastic component of the strain, Cristescu (1965) assumed quite general
constitutive relations which are able to emphasize not only plastic inviscid properties, but also
viscoplastic effects. In a general form, such constitutive equations are written as (see, also,
Cristescu, 1967)

(11.78)

where by giving various expressions for the coefficients Agkl and Bij , one may obtain several
constitutive equations used in dynamic plasticity.

For the particular stress state under consideration, equation (12.78) can be written as

p

€ox = q>21 o~ + q>22 00x + "'2

(12.79)

From equations (12.70) and (12.75) to (12.77), together with the simplified notation
mentioned before, equations (12.79) can be written, respectively, as
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au, (2 1)- = - CPII + - 0 + CPl2 t + VIax 3 E

aUt 4 ( 1 )- = - CP21 0+ 2CP22 + - t + 2V2aX 3 G

ki . hOE 9KGta ng Into account t at Om =-, = -.:...:;;::..::..--
3 (3K +G)

For simplicity, Cristescu (1965) adopted in his analysis the notations

°11 =t( 2CPII + ~ + 3~)' "12=CPI2' PI =VI

4 1°21 = '3 CP21 ' "22 = 2 CP22 + G' P2 =2V2
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(12.80)

(12.81)

so that the constitutive equations (12.80) can be written, respectively, in the following simple
form

au, . .
- ="11 ° + "12 't + PIaX
aU,
- ="21 a+ "22 t + P2ax

(12.82)

(12.83)

Velocities ofPropagation
Following Cristescu (1965), one computes, then, the characteristic lines of the systems
(12.69&12.82) to obtain four families ofcharacteristic lines satisfYing the differential equation

p2 ("11 "22 - "12 (21)( dx)4 - p ("11 + (22)(dx)2 (dt)2 + (dtt =0

Thus, one obtains two velocities of propagation which are furnished (Cristescu, 1965) by

C~}= "II + "22 ± V("I - (22)2 + 4"\2 "21

Cn 2p("11 "22 - "12 (21)
(12.84)
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where the subscripts "TV' and "LT' refer, respectively, to a circumferential and a longitudinal
motion.

Differential Relations Satisfied along the Characteristic Lines
In order to perform an integration scheme and to study the properties of the waves involved,
it is necessary to write the differential relations satisfied along the characteristic lines.

For the system of equations (12.69&12.82) the differential relations satisfied along the
characteristic lines (12.83) can be determined as

'" p c( I - P"22 C 2) du\ '" p2 "12 C 3 d0\ +( I - P"22 C 2)da

+p "12C2 dt +[pPIC2(I -P"22C2) +P2".2P2C4

+ C ( I - Pa22 c2) Xx '" P c3 au Xo ) d t = 0

where for c, appearing in (12.85), one of the two expressions (12.84) may be replaced, and
"d" stands for the "interior derivative" along a characteristic line. It is sometimes useful to
write the equations (12.85) in another form, i.e.,

P "21C2du\ + ( 1- Pall c 2) d0\ '" "21 cdo

I-P"II C2 3 2
+ +[",p.pa2I c P2 c(l-pall c)

'" pc
1-pall c2

+ "21 c 2 Xx + )Co) d t = 0
P

(12.86)

All the unknown functions involved in the problem are present in all the differential relations
(12.85), and thus all the four waves are at the same time shearing waves and longitudinal
waves. This conclusion holds, also, for the general constitutive equation (12.82).

Coupling ofthe two Types of Waves
From (12.69) and (12.82), the dynamic jump conditions across a wave front can be obtained
as

(12.87)
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and

(12.88)

(12.89)

where [.] designates the jump of the function inside the same brackets. Meanwhile, the
kinematic jump conditions are expressed as

[ ~~ ] = - c [ ~~ ] for W= up up 0 , t

Combining (12.88), (12.89), and the result in (12.87), Cristescu (1965) obtained the
following two (equivalent) conditions

[~:' ](1- pu" c') = pu" c' [~~]

[~~ ](1-Pu"c') = p«" c' [~~]
(12.90)

From (12.90), it is evident that generally for (12.82), because an '" 0 and a 21 '" 0, both kinds
ofwaves are coupled: both produce a longitudinal and a circumferential motion. This is the
reason why the velocities of propagation (12.84) were denoted by LT and TL.

In view of the relations (12.90), one can conclude that, if one of the following three
possibilities arises

(12.91)

one has

(12.92)

respectively. In the first case, the shearing motion is dominant with respect to the longitudinal
motion, while in the third case a reverse situation arises. The equality in (12.91) and (12.92)
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occurs in isolated points or for a particular type of (theoretical) loading when everywhere
iJ = t, which is referred-to by Cristecu (1965) as "diagonal loading" . Similarly, one obtains

(12.93)

Initial Conditions.
One may assume that at t < 0 the tube is at rest and that some constant uniformly distributed
stress state is present, i.e.,
For instance: 0 0 = to = O.

o~ x ~ ro) _u\ =u\ =0

t<O 0 - 0 0 , t = to
(12.94)

Boundary Conditions
Following Cristescu (1965), the boundary conditions may be prescribed as follows:
The end x = roof the tube is fixed;

x = r )
o u=u=O

\ \

t ~O

while the end x = 0 is put into a combined motion

x=OI u\=U(O,t), u\=V(O,t).
t ~ 0

(12.95)

(12.96)

Applying the conditions (12.94 to 12.96), one integrate the system of equations
(12.69&12.82) in order to obtain

u\(x,t), u\(x,t), o(x,t), t(x,t)

Then, the longitudinal and circumferential motions of the points lying on a certain circle x =
x· can be determined from
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u(x',t)= !ut(x',t)dt,
o

t

6(x',t)=+ !ut(x',t)dt,
o
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where r is the radius ofthe tube. Summing up the displacement u (x. t) along the tube (fixed
t) we obtain the variation of the length ofthe tube, at the considered time t.

The approach presented above can be used to study the dynamic plastic behaviour ofvarious
materials under combined loading (bi-axial loading of tubes). The entire picture of wave
propagation and reflection can be described by integrating the previously mentioned
equations. Cristescu (1965) demonstrated the application ofhis approach, summarized above,
to the following particular representations ofconstitutive relations.

(A) The perfectly-elastic case.

It is the simplest possible case.

aUt
E-=oax

a"tG-=tax

which is obtained from equations (12.82) for

CPu = CPl2 = CP21 = CP22 = '" I = "'2 = 0

(B) A more complicated constitutive equation corresponds to

For instance the Hohenemser-Prager (1932) constitutive equation is of this form

(12.97)

(12.98)

(12.99&12.100)
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(C) The last particular case (12.98) may be considered as a special case
of the more general case.

The constitutive equations (12.82) can now be written as

(12.101)

Such constitutive equations are referred-to as "quasi-linear uncoupled' constitutive
equations.

(0) If all the coefficients CPij are different from zero but

(12.102)

the constitutive equations will be called quasi-linear coupled constitutive equations. An
example of such constitutive equations is the Prandtl-Reuss constitutive equation

O· o'
2G e:. = 0:. + 2G kl kl 0:.

IJ II H' IJ
0;""0;""

where the work-hardening law takes the form

0ij O;j = H( J0kl d €~ )

and H' is the derivative ofH with respect to its argument.

For the case under consideration, Eqn. (12.103) is expressed as

(12.103)

(12.104)
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~ [1 4 1 2]' 2 1 ,to= -+---0 0+---01:1:
E 27 H'I' 3 H'I'

2 2

, 2 1 [1 1 2]tY=---01:o+ -+--1:
9 H' I' 2G H' I'

2 2

(12.105)

(E) Finally the last special case, which will be considered is an example of the general
constitutive equation of the type (12.76&12.78), is of the form

0' ( 1 g-(I'), ij 1 k, 2",
Eij = 2G +~ 1- ~ Ojj +~OklOkIOij (12.106)

This can be obtained (Cristescu, 1967) by assuming that the rate of strain component can be
decomposed as

E.. = E~ + E~P + E~
IJ IJ IJ IJ (12.107)

where E~ is the viscoplastic rate of strain component and E: is the plastic inviscid rate of
strain component. In (12.106) k is a plastic constant, 1') is the viscosity coefficient while the
function g-describes the work-hardening properties ofthe material.

In particular, for the problem under consideration, Eqn. (12.106) can be written as

, [1 4 g-(li) 2] 2 7(Ii) , 1( k 1
€ = E + 27 -I-i- 0 0 + '3~ 0 1: t + 31') 1 - ~ 0

, 2 7(Ii> ,[ 1 7( Ii) 2] 1 ( k 1Y=---01:0+-+--1: t+- 1-- 1:
9 I' 2G I' 21') h.I'

2 2 Vl2

(12.108)

The above constitutive equations describe the main properties emphasized by the general form
ofthe constitutive equation (12.78). Ifnecessary, other effective examples of the constitutive
equations (12.78) can be considered, which would emphasize other possible mechanical
properties.
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12.8. Transition to Dynamic Thermoelasticity

The presence of a thermal field, due to heating of the body, is often considered as non­
homogeneity. The situation is more complicated when the thermal field is variable, and, also,
when the temperature variation is sudden at the boundary of the body. A more difficult
problem, which is often encountered in practice is that in which variations in both temperature
and stress are prescribed at the boundary of the body.

When a sudden variation of the temperature is prescribed at the boundary of the body,
then a stress field will be produced as a result of thermal dilatation. The abruptness of the
temperature variation will involve inertia forces. This, by consequence, results in stress waves
which will propagate through the body. Meantime, if the temperature at the boundary
surpasses a certain limit, the body will pass from the elastic to the plastic state. Thus, the
resulting stress waves can be either elastic or elastic-plastic. In addition, it is likely that
various plastic loading domains will appear due to the existence of the thermal field in the
body, just as supplementary plastic regions can appear due to the non-homogeneity of the
body (e. g., Raniecki, 1964 and Cristescu, 1967).
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CHAPTER 13

CHARACTERIZATION OF LINEAR VISCOELASTIC RESPONSE
USING A DYNAMIC SYSTEM APPROACH

13.1. Introduction

The characterization of the relaxation and creep response functions of viscoelastic
materials has always been a main research topic in Viscoelasticity. The construction of a
precise model for describing the rheological response of the material and the establishment
ofan efficient and accurate method for determining the pertaining material response functions
from experimental data have been basic tasks in this research field.

To achieve this objective, both analytical and experimental methods have been
developed, and can be classified into the following three categories.

a) Quasi-static Methods
These methods are directly based on the definition of the creep, or the relaxation,
function. By these methods, one usually conducts a series of quasi-static creep or
relaxation experiments, in which, respectively, a constant stress or constant strain
is loaded onto the specimen, and the time-dependent response of the material is
measured. The pertaining creep or relaxation function is then determined from the
experiment data (Chapter 8).

Quasi-static methods, as described above, are simple, but they have a vital
shortcoming that a very long period of time is usually required so that the creep,
or relaxation, properties of the material are to be fully demonstrated. This
requirement of a very long time scale often constitutes a distinct obstacle for using
quasi-static methods to determine the creep and relaxation functions of a
viscoelastic material.

b) Time-temperature Superposition Methods
To overcome the inconvenience of long time testing periods in the quasi-static
methods, the so-called time-temperature superposition (TfS) method has been
developed. The basis of this method is that the time and temperature effects on a
linear viscoelastic material are directly interrelated. At a low testing temperature,
the creep, or the relaxation, experiment requires a long period of time, while at a
higher temperature, it takes a relatively shorter period of time. By using the TIS
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method, the creep or relaxation experiments are conducted at elevated temperatures
for relatively short periods of time, then, the measurements are transformed to
obtain the corresponding viscoelastic properties at the required low temperature
(usually the room temperature).

The TIS method would demand, however, a set of complex temperature control
facilities. Another difficulty related to this method stems from the fact that
nonlinearity in the viscoelastic response of the material could be introduced at high
temperature.

c) Dynamic Methods
Dynamic methods are based on the results of dynamic experiments performed on
viscoelastic materials. In these methods, the experiments are often conducted by
applying a sinusoidal loading on the viscoelastic material and the resulting
experimental response data are gathered in a frequency domain to obtain pertaining
response spectra. The creep or relaxation functions are, then, obtained from the
analysis of these spectra (Chapter 8).

The most distinct advantage of the dynamic methods over the quasi-static and TIS
methods is that the dynamic experiments are relatively easy to conduct within a
short period of time and without the need of complex experimental facilities.
Therefore, the use of dynamic methods are attracting recently more and more
attention from the researchers in the field.

Gibson, et al. (I990), for instance, presented a method by which experimental
dynamic data are used to determine both dynamic and quasi-static viscoelastic
response behaviour ofthe material. In their method, the complex moduli are obtained
first from vibration measurements by employing the Fast Fourier Transform
technique. Then, the quasi-static creep or relaxation properties are calculated from the
already determined complex moduli by a numerical integration algorithm.

13.2. Dynamic System Identification Methods

In this chapter, a linear viscoelastic material is considered as a dynamic system. From
this point ofview, a dynamic system identification method is presented for the determination
ofthe relaxation or creep function of the material from dynamic experimental measurements.
First, the relation between the relaxation or creep function and the frequency response
function ofthe system is established by assuming a model of rational function of polynomials
for the frequency response function. Second, a discrete-time system analysis method is
introduced to identify the order and parameters of the model. Within the context of this
approach, the presentation of this chapter deals distinctly with the following two topics:
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(i) Characterization of the response behaviour of linear viscoelastic materials by
incorporating the measurements of the time-rate of the input, together with
those ofthe output signals. This is carried out in Section 13.3.

(ii) Extending the identification model introduced under (i) above to include the
instantaneous response behaviour at time t=O. This is presented in Section
13.4.

The presented approach is illustrated, at its various stages, by numerical examples.

13.3. Discrete-time System Analysis as Based on the Time-rate of the Input Signal

For a linear viscoelastic behaviour, the general expressions of the constitutive
relationship can be written for both relaxation and creep, respectively, as follows

oCt) = J" de(t)R(t - "t)d"t
d"t

e(t) = J" do("t) C(t - "t)d"t
d"t

(13.1)

(13.2)

where oCt) is the stress, e(t) is the strain, R(t-"t) is the relaxation function and C(t-"t) is the
creep function ofthe material.

Equations (13.1) and (13.2) above are one-dimensional representations of the
"Boltzmann Superposition Principle" or "Hereditary Law" introduced earlier in Chapter 8.
The presented equations (13.1) and (13.2) are governing, respectively, the stress-relaxation
and creep response of the linear viscoelastic material. Both the relaxation function R(t) and
creep function C(t) are usually defined for t~O, whereby for t<O, one has

R(t) = 0
C(t) = 0 t<O (13.3)

Mathematically, equations (13.1) and (13.2) have the same structure and both can be
written in the following general form:
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y(t) = f x(t)g(t -'t)d't

where, in the case of stress-relaxation,

x(t) = d£(t)
dt

g(t) = R(t)

y(t) = o(t)

and, in the creep phase,

x(t) = do(t)
dt

8(t) = C(t)

y(t) = £(t)

(13.4)

(13.5)

(13.6)

For simplicity, we shall refer to the situation identified by (13.5) as "the relaxation
experiment", and to the situation designated by (13.6) as "the creep experiment". The
function g(t) appearing in both (13.5) and (13.6) is referred to as the "characteristic
function" ofthe material. Thus,from a system theory point ofview, Eq.(J3.4) represents a
relationship between an input x(t) and a corresponding output y(t) of the system with g(t)
being the system characteristic function.

Therefore, ifone considers the viscoelastic material specimen as a dynamic system,
then, the characterization of its rheological response would involve a process of
identification ofits characteristic junction g(t) from dynamical measurements.

Taking Fourier transform ofy(t) and x(t) and denoting

and

Y(iw) = _I fy(t)e -iwtdt
2n (13.7)



www.manaraa.com

X(itA» = _1 Ix(t)e -ilol1dt
21t

then, by substituting Eqn. (13.4) into Eqn. (13.7), one can write that

- -
Y(itA» = 2~ Ie -iIolCg(')d'I x("t)e -ilol~dt

183

(13.8)

(13.9)

where' is the time parameter (t-t). Thus, by combining (13.8) and (13.9), one has the
following relation in frequency domain

where

Y(itA» = 21t H(itA» X(itA»

-
H(itA» = _1Ie -ilollg(t)dt

21t

(13.10)

(13.11)

With reference to Eqn.(13.11), H(itA» is the Fourier transform of the system
characteristic function g(t). Meantime, the 'frequency response function" of the system is
identified, with reference to (13.10), as

F(itA» = 21t H(itA» (13.12)

In terms of the frequency response function (13 .12), the response equation of the
system in frequency domain, Eqn. (13.10), becomes

Y(itA» = F(itA>)X(itA» (13.13)

Denoting the inverse Fourier transform of the frequency response function F(itA» by
ttt), then, in view of expressions (13.11) and (13.12), it follows that
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(13.14)

= f2tt H(iw)ei<.ltdw

= 2ttg(t)

Therefore, from (/3.12), or. (/3. 14) implies that the frequency response function of
the dynamic system is the Fourier transform ofthe characteristic junction g(t) ofthe system
multiplied by 21r.

To model the response behaviour ofa linear viscoelastic material, we assume that the
"frequency responsefunction" ofthe corresponding dynamic system has the following form

(13.15)

where a and bl , b2, ... ,bp are constant parameters.

13.3.1. SYSTEM CHARACTERISTIC FUNCTION

Corresponding to Eqn.(13.15), the system characteristic function g(t) is derived as
follows:

Assume the following p-th. order algebraic equation:

(13.16)

has roots ~b ~2"'" ~, then, the frequency response function, Eqn. (13. 15), can be expressed
as

F(iw) a (13.17)

Further, the above equation can be expressed in a partial fraction form as
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t Am
F(iw) = -. .-:::...-

mol lW - ~m
(m=I,2, ... , p)
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(13.18)

where Am (m=I,2, ... ,p), corresponding to roots ~m (m=I,2, ... ,p), are calculated by

a
Am = --p--=----
n (~m-~j)

j=l. m=1
j.m

(J·m=12··· p, '"

(13.19)

Taking the inverse Fourier transform ofEqn. (13.18), one obtains

~ p A
= JL~ei"'tdw

mol lW ~m
-~

~ A
= tJ~ei"'tdw
mol lW ~m

-~

= t Am e (",IU(t)
mol

(m=I,2, ... , p)

where u(t) is the Heaviside step function (Appendix B) defined by

(13.20)

u(t) = {~ t<O
t~O (13.21)

Thus, Eqn. (13.20) can be expressed as

t~O

t<O
(13.22)

(m=I,2, ... , p)

From equations (13.5), (13.14) and (13.20), the relaxation function R(t), in a dynamic
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relaxation experiment, is expressed as

R(t) = _1f{t)
27t

= _It A", e(,., t u(t)
27tm =1

_{_I_t Am e (,., t t~O
- 27t m=1

o t<O

(m=I,2, ... , p)

(13.23)

On the other hand, if the experiment is a dynamic creep experiment, then, the system
characteristic function g(t) represents the creep function C(t), Eqn.(13.6). Thus. the
expression for the creep function C(t), corresponding to (13.23), can be written as

1 p (,., t
C(t) = -1: Am e u(t)

21t m =1

_{_I tAm e(,.,t
- 21tm =1

o

(m=I,2, ... , p)

t::>:O

t<O
(13.24)

Referring back to Eqn. (13.15). if the frequency response function of a dynamic
system in frequency domain is expressed by this equation, then, the dynamic behaviour of the
system may be assumed to be governed by the following differential equation in the time
domain

d P dP-
'-y(t) + bl--y(t) +... + bpY(t) = ax(t)

dt P dt p-I (13.25)

where a and b]o b].....bp are the same constant parameters appearing in Eqn. (13.15). Taking
Fourier transform ofEqn.(13.25), one has, with reference to (13.7).

(iw)P Y(iw) + bl (iwr
l Y(iw) +... + bp Y(iw) = a X(iw)

Thus, by recalling the definition of frequency response function, that is

(13.26)
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F(' ) - Y(iw)IW ---
X(iw)

it is clear that one arrives back to Eqn. (13.15).

Eqn. (13.25) can be further written in the following operational form

D(t) y(t) = a x(t)

where
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(13.27)

(13.28)

(13.29)

However, in order to determine the frequency response function of the system, it is
necessary to establish the values of the parameters a; bJo b2o ...• bp and the order p, Eqn.
(13.26), or from (13.28) the measurements ofthe input x(t) and the outputy(t).

13.3.2. DETERMINATION OF THE PARAMETERS a AND bl • b2o ...• bp OF THE
MODEL EQUATION (13.26)

In practice, x(t) and y(t) are usually given in the form of discrete-time signals. That
is, the continuous-time signals x(t) and y(t) are sampled into discrete series. Let us assume
that the sampling interval is !:!T. Thus, from experimental measurements, one obtain the
following two discrete time series; representing, respectively, the output and input of the
system:

Yi = y(t.T· i) }
Xi = x(t.T' i)

(i = 0 I 2···), , , (13.30)

With reference to equations (13.5) and (13.6), a signal ofthe discrete-time input series
{Xi}, i=O,I,2, ... , represents, in the formulation below, the time-rate of strain in a dynamic
relaxation experiment, or, alternatively, the time-rate ofstress in a dynamic creep experiment.
In an actual experiment, the loading signal is always known, thus, the corresponding time-rate
of the signal can be easily obtained. In this, one assumes (e.g., Cadzow, 1973) that the
relation between the two discrete-time series {X;} and {Yi}' i=O,I,2, ... , is governed by a
discrete-time system of the p-th. order. That is

Y· + illY' I + ... + Il IY· I + Il V. = ax·I I' ,- t'p- '-p- 1'1'"' I-p I (i=O 1 2···), , , (13.31)
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where a and PI' P2,"" Pp are constant parameters.

Let
BYi=Yiol ; (i=0,1,2, ...)

and

where B is a "single-step delay operator ". Eqn. (13.31) can, thus, be written as

( i=0, I,2,..-) (13.32)

Taking the z-transform ofEqn. (13.32), one has (e.g., Cadzow, 1973),

Y(z) = Hb) X(z)

where Y(z), X(z) are, respectively, the z-transforms of the discrete-time series {Yi} and {X;}.
In this equation, ".I(z) is the "transfer function ofthe discrete-time system" expressed by

In analogy to (13.16), we consider the p-th order algebraic equation:

1 + PI S -1 + ... + Pp s -p =°

(13.33)

(13.34)

(13.35)

Denoting the roots of(13.34) by AI,A2, ... ).p" then, the transfer function of the discrete-time
system, Eqn. (13.33), can be written as

Hd(z) = a
(l-AIZ -1)...(I-ApZ -I)

= t Bm
m:1 I-A z-I

m

(m=I,2,.··, p)

where Bm(m=I,2, ... ,p), corresponding to roots Am (m=I,2, ... ,m), are calculated by
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(13.36)

Taking the inverse z-transform of Eqn.(13.35), one obtains the following
characteristic series of the discrete-time system

(k=012···, , , m=12···p), , , (13.37)

where u[k] is a discrete-time unit step function defined by

u[k] = { ~ k<O
k = 0, 1, 2,.·· (13.38)

By using the function hik), Eqn. (13.37), the relation between the input and output of the
discrete-time system can be expressed as

.
Yi = L hik) Xi - k

k = 0

(i k = 012···), , , ,

(13.39)

In searching for the relation between the characteristic function g(t) ofa continuous­
time system and the characteristic series hJk) of the corresponding discrete-time system, one
may approximate Eqn. (13.4) by

.
y(AT' i) .. Lg(k . AT) x[AT . (i - k)] . AT

k=O

1 •
= -L f(k . ~T) x[~T . (i-k)] . ~T

21tk=O

(13.40)

(i k=O 1 2···), ",

Combining the above equation with Eqn. (13.30), one has
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1 ~

y·"-E f{k . loT) x· . loT
I 2nk~ I~

(i, k = 0,1,2,.··)

(13.41)
Comparing equations (13.39) and (13.41), the following equation may approximately

hold

I-f{k . loT)loT ,. hik)
2n

(k=O,I,2,.·-)
(13.42)

Thus, from equations (13.22), (13.37) and (13.42), it follows that

(m= I 2 ... P . k=O I 2 ...), '" , , ,

(13.43)

Eqn. (13.43), above, is the relation which determines the parameters of the model
equation (13.15). If the parameters a and P",. (m=/,2, ... ,p) of the discrete-time system are
determined from the discrete-time series ofinput signals {"l} and of the corresponding output
signals {Yi}, then, the parameters a and bm, (m=J.2....•p) for the continuous model equation
(13.15), or alternatively (3.26), can be calculated, as illustrated below, by using Eqn. (13.43).

13.3.3. DETERMINATION OF THE PARAMETERS a. P... m=/.2•...•p OF THE
DISCRETE-TIME SYSTEM EQUATION (13.31)

In the following, we discuss the method to determine the orderp and parameters a
andP.. (m=/.2•...•p) of the discrete-time system.

Choose arbitrarily an order p and parameters b; Pm (m= /.2•....p) of a convenient
discrete -time system. Then, with reference to Eqn. (13.31), it follows that

(i = °I 2 .. ·), , ,

(13.44)



www.manaraa.com

191

where «1 (i=O,1,2,...) is the combined error in choosing the values of ci, Pm (m=I,2,...,p) and
the order p. The error e, can be expressed as

where

= y._ {W.}T {B }
I I Pm

(i = 0, I, 2, ... m=12···p), , ,

(13.45)

... B IX), Pp ,

(13.46)

(i=O I 2··· . m=1 2 ... p), ,,' , , ,

(i==O I 2 ... . m== I 2 ... p), '" , , ,

one has

(i=O 1 2 ... . m== I 2 ... p)
t '" , , ,

(13.47)

(13.48)
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Thus, for every choice ofan orderp, a corresponding {Pm} can be determined by Eqn.
(13.48). Then, from Eq.(13.47), the error corresponding to the choice of the orderp can be
calculated. Since e2 is a function ofthe orderp, the choice of the order of the discrete-time
system can be made by the requirement that it would result in a minimum e2

•

13.3.4. NUMERICAL EXAMPLES

To test the analytical model developed in the previous section, a number of numerical
illustrations are carried out below. The formalism of these illustrations is outlined as follows:

1. For a given system, one calculates the response under certain dynamic loading
by a numerical method. Here, the Runge-Kuta method (e.g., Morris, 1983) is
employed. Consequently, two discrete-time series (One is the input to the
system and the other is its response) are obtained.

2. Assuming that no other knowledge about the system is given except the two
discrete-time series mentioned by Eqn. (13.30), one applies the already
introduced Dynamic System Identification Method to the two discrete-time
series. In this, one determines first, the parameters characteristic of the
transfer function of the discrete-time system, then, establishes the
corresponding continuous system.

Example 13.1
Consider the first order system

y + 5y =x(t)

(13.49)
under an input represented by: x(t) = 100 sin (tl.5).

By comparing (13.49) to (13.25), the parameters of the system (13.49) are given by:

p=l; b.=5; a=1.0

With an input x(t) = 100 sin (tl.5), which may be the rate of strain or stress, one can obtain
two discrete-time series of input and output as plotted, with l:iT =0.01, in Figures 13. 1 and
13.2, respectively, One uses, then, discrete-time systems (DTS's) of different orders, Eqn.
(13.32), to model the system. The errors pertaining to three different discrete-time systems
were calculated and are listed in Table 13. I.
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TABLE 13.1. Errors in determining three different discrete-time systems

Order

Error

First

O.8S2409E-02

Second

O.2S3S36E+OO

Third

O.634S91E-l

From Table 13.1, the DTS offirst order is the system with minimum error, therefore,
one chooses the first order DTS to model the continuous system governed by a first order
differential equation of (13.49). The parameters of this first-order DTS are listed in Table
13.2.

I
a
j

100

50

o

-50

-100

o 2 4 6 8 10 12 14 16 18 20

tlme(_d)

Figure 13.1 Input: x(t) = 100 sin (t lJ
) with AT = 0.01. "Reprinted from Int. J. Pres. Ves.

& piping 61, Yu P. and Haddad, Y.M., A dynamic system identification method for the
characterization of the rheological response ofa class of viscoelastic materials, 87-97, 1995,
with kind permission from Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington
OX5 1GB, UK".

TABLE 13.2. Parameters characteristic offirst-order DTS

Parameter

Value

p
-0.9S2681E+00

a

0.951930£-02 0.95268
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where pand a are parameters of the discrete-time system, (13.3 I), and A is the root of the
characteristic equation (13.34) ofthe considered first-order DTS. The corresponding transfer
function Hd(z) and the parameter B can be obtained by using equations (13.35) and (13.36).
Then, according to Eqn.(13.43), the parameters, A", , (", (m=l) of the corresponding
continuous-time system can be calculated.

2O.---=--~-------------------,

15

10

f\ f\ f\ f\ f\ 1\

·15

f 5

'15• 0 -_._.•._•. -_.- .-..-- -..- ..,.. ..._- -, ..

J ·5

·10

\J \) V ~ V ~ •
·2001---.4.2 ---I..----l6--81---1.4.0-~12:-----l'4-:----:1':-6--:1:':'8-~2O

111M (HConeIl

Figure 13.2 Outputy(t) corresponding to the input x(t) in Fig. 13.1. First-order system
y+~ y = x(t) with parameters a '" 1.0, h, '" S and an order p = 1. "Reprinted from Int.
J. Pres, Ves. & piping 61, Yu P. and Haddad, Y.M., A dynamic system identification
method for the characterization of the rheological response of a class of viscoelastic
materials, 87-97, 1995, with kind permission from Elsevier Science Ltd, The Boulevard,
Langford Lane, Kidlington OXS 1GB, UK",

Figure 13.3 shows the exact and the estimated response given by the 1st order DTS.
Figure 13.4 shows the exact and the estimated system characteristic function g(t) from the 1st
order DTS.
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o 2 .. 6 6 10 12 14 16 16 20

TIme (HCOlld)

Figure 13.3 The exact and the estimated responses from the first-ooer DTS. First-order
system: y+ 5y = x (t)with parameters a = l'O,b l = 5, p= 1 and inputx(t) of Fig. 13.1.
"Reprinted from Int. J. Pres. Ves. & piping 61, Yu P. and Haddad, Y. M., A dynamic
system identification method for the characterization of the rheological response of a class
ofviscoelastic materials, 87-97,1995, with kind permission from Elsevier Science Ltd, The
Boulevard, Langford Lane, Kidlington OXS 1GB, UK".

-.Ud
••••.• Mel

i 0.007

10'00lI
'11 0.005~----!\r;--------------------J

10.0040.003

0.002

0.001

llIM (MCOnd)

Figure J3.4 The exact and the estimated system characteristic functions g(t) from the first­
order DTS. First-order continuous time system: y+ 5y = x(t)with parameters a = 1'0.
b l = 5, p= I and input x (t) of Fig. 13.1. "Reprinted from/nt. J. Pres. Ves. &piping 61,
Yu P. and Haddad, Y. M., Adynamic system identification method for the characterization
of the rheological response of a class of viscoelastic materials, 87·97, 1995, with kind
permission from Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington OX5
1GB, UK".
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Example 13.2

Consider the second order system

y + 25y + lOOy = x(t) (13.50)

With an input x(t) = 100 sin (tl.5), Fig. 13.1, which may be the rate of strain or stress. The
corresponding output discrete-time series is plotted in Fig. 13.5, with 6.T = 0.01. The errors
for discrete-time systems ofdifferent orders are listed in Table 13.3.

TABLE 13.3

Order

Error

0.8

0.6

First

0.254506E-02

Second

0.971892E-05

Third

0.234843E-04

Fourth

0.877769E-03

0.4
E
I 0.2>-•
'0 0
I1.0.2
a:
·0.4

-0.6

-0.8

-1
0 5 10 15 20 25 30 35 40 45 50

Time (second)

Figure /3.5 Outputy(tj corresponding to the input x(t) in Fig. 13.1. Second-order system:
y+ 25Y+ 100 Y= x (t)with parameters a=1'0, bl =25. b,=IOO and p =2. "Reprinted
from Int. J. Pres. Ves. & piping 61, Yu P. and Haddad. Y. M.• A dynamic system
identification method for the characterization of the rheological response of a class of
viscoelastic materials. 87-97. 1995. with kind permission from Elsevier Science Ltd. The
Boulevard. Langford Lane. Kidlington OX5 1GB. UK".
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0.8
exact ­

estimated ...•.

0.6

0.4

I 0.2
•
'0 0
I1.0.2
~

-0.4

-0.6

-0.8

5045403530
-11---±----I----l---+---4---+---4---+---+-~o 5 10 15 20 25

nme(second)

Figure 13.6 The exact response and the estimated responses from the second-order DTS.
Second-order system: y+ 255' + 100 Y= x(t) with parameters a = 1-0, b, = 25, b2 =100,
P = 2 and input x(lj of Fig. 13.1. "Reprinted from Int. J. Pres. Ves. &piping 61, Yu P.
and Haddad, Y. M., Adynamic system identification method for the characterization of the
rheological response ofa class ofviscoelastic materials. 87-97, 1995, with kind permission
from Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington OX5 1GB, UK".

From Table 13.3, the DTS of second order is the system with minimum error, the
parameters ofwhich are given in Tables 13.4 and 13.5.

TABLE 13.4

Parameter 6, a

Value -0.175611E+Ol 0.764908E+00 0.906642E-04

TABLE 13.5

Parameter

Value 0.95601 0.80010
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where Al and A2 are two roots ofthe characteristic equation ofthe corresponding DTS,
Eqn.(13.34)

Figure 13.6 shows the exact and the estimated response given by the 2nd order DTS.
Figure 13.7 shows the exact and the estimated system characteristic function g(t) for the 2nd
orderDTS.

exact ­
estimated ----

504540353025

'.

2015105

0.00035

0.0003

£ 0.00025
01

c
0

tl 0.0002c
:::l-U
~

0.00015.;:

~
l!
III
.I:. 0.0001
(.)

5e-05

0
0

Time (second)

Figure 13.7 The exact and the estimated system characteristic functions g (t) from the
second-crder DTS. Secood-order system: y+ 25 Y+ 100 Y=X(t)with parameters a =
1. 0, bl - 25, bt -100, P - 2 aDd input x(t) ofFig. 13.1. "Reprinted from Int. J. Prt!s.
Va. & piping 61, Yu Ping aDd Haddad, Y. M., A dynamic system identification method
for the characterization of the rheological response of a class of viscoelastic materials, 87­
97, 1995, with kind pennission from Elsevier Science Ud, The Boulevard, Langford Lane,
Kidlington OX5 1GB, UK".

13.4. Extension of the Model to Include the Instantaneous Response Behaviour

In Section 13.3, the linear viscoelastic material was considered as a dynamic system
whereby an analytical model was presented for the determination of the creep and relaxation
functions of the material from dynamic experimental measurements. First, the relation
between the viscoelastic material function and the frequency response function of the system
was established by assuming a model of rational function of polynomials for the frequency
response function. Then, a discrete-time system analysis method was introduced to identify
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the order and parameters of the model. The introduced method requires two discrete-time
series, i.e., the time-rate of the input signal and the corresponding output signal. The
instantaneous response of the system was not, however, taken into consideration. In the
present section, the approach of Section 13.3 is followed with the consideration that the
~iscoelasticmaterial function is discontinuous at the time t=O. Here, the relation between the
relaxation or creep function and the transfer function ofthe system is established by using the
Laplace transform method. A discrete-time system analysis method is introduced to identify
the order and parameters of the model. The method requires, similar to the earlier treatment
of Section 13.3, two discrete-time series, i.e., the time-rate of input signal and the
corresponding output signal. Numerical examples are given to illustrate the application ofthe
proposed analytical model.

13.4.1. THE MODEL

In the present section, the same idea of Section 13.3 is adopted, but with the
pertaining viscoelastic experiment is considered to begin at time t = O. Therefore, Laplace
transform is seen to be more suitable for the analysis of the viscoelastic problem by using the
initial value theorem. In this context, the Laplace transform pair (e.g., Fodor, 1965)

~(s) = J7(t) e -stdt
o

r'tioo

7(t) =~ J~(s) estds
2m .

r-I-

(13.51)

is employed in the course ofthe presented analysis of this section. Here, in equation (13.51),
9"(t) is a time function, SI(s) is the Laplace transform of .9'(t) and r is a real constant.

Denoting the Laplace transforms of y(t), x(t) and h(t) by Y(s), X(s) and H(s),
respectively, and taking Laplace transform of Eqn.(l3.8), one obtains the following
relationship between the input and output

Y(s) = H(s) X(s) (13.52)

where the theorem ofLaplace transform ofthe convolution oftwo signals has been used (e.g.,
Fodor, 1965).

In view ofthe previous analysis, in the dynamical relaxation experiment case, H(s) is
interpreted as:
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H(s) = JR(t) e -Mdt
o

and, in the dynamic creep experiment case, H(s) is identified as:

H(s) = JC(t) e -stdt
o

(13.53)

(13.54)

Before a model is assumed for the function H(s), we have to analyze the special
behaviour ofthe relaxation and creep functions at 1=0. We know that both R(t) and C(I) are
not continuous functions at 1=0. Each is equal to zero at 1=0·, and is equal to a finite value
at 1=0+.

From the initial value theorem ofLaplace transform (e.g., Fodor, 1965), one has

lim s H(s) = R(O')

lim s H(s) = C(O')

for the relaxation case

for the creep case
(13.55)

Because each ofR(O+) and C(O+) is not equal to zero, we can assume the following
rational function for H(s)

(13.56)

=Q(s)
P(s)

where,
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Q(s) = b Sp-I + b Sp-2 + + b s + bI 2 ... p-I p

(13.57)

in which, hi' h:z- .. , hp' and ai' a]o ...• ap are constant parameters, and p is the order of the
polynomial. To satisfy the condition (13.55), the order ofpolynomial Q(s) has to be one less
than the order ofP(s).

On the basis of the assumption of Eqn.(13.56), the response relation (13.52) is
expressed as

P(s) Y(s) = Q(s) X(s) (13.58)

Taking the inverse Laplace transfonn of(13.58), one obtains the following model in
time-domain

d P dP- 1

-y(t) + al--y(t) + ... + apY(t)
dt p dt p- I

(13.59)
dP- 1 dP- 2

= bl--x(t) + b2--x(t) + ... + b x(t)
dt p - I dt p-2 p

With reference to (13.56), one assumes the characteristic equation

~p + a ~p-I + ... + a ~ + a = 0
I p-I P (13.60)

with roots ~I , ~2' ... , ~ , then, the transfer function H(s), (13.56), may be written in the
following partial fraction fonn (e.g., Fodor, 1965)

b Sp-I + b Sp-2 + ... + b
H(s) = I 2 p

(s - ~I)(S - ~2) ... (s - ~p)

=~+~+ ... +~
s - ~I S - ~2 S - ~

t Am
m=1 S - ~m

(13.61)
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where A",(m = J. 2, ... p) can be calculated by

Am = lim H(s) (s - ~)
.-~

= bl~-l T b2~-2 T ... T bp_l~m T bp

IT (~m - ~k)
k=l. m=1

k'm

(13.62)

By taking the inverse Laplace transform ofEqn.(t3.61) and noting that the inverse
Laplace transform of l/(s-f) is e(t, one can obtain the time-domain model for h(t) as

h(t) = t Am e~t
m=1

(13.63)

13.4.2. DETERMINATION OF THE CHARACTERISTIC PARAMETERS OF THE
PROPOSED MODEL.

In the previous section, we established the model for the characterization of the
response behaviour of a linear viscoelastic material with the inclusion of the instantaneous
response at time t = 0 . In this section, we discuss the determination of the parameters
characteristic of the model by using the dynamic experimental measurements. Thus, in the
pertaining dynamical relaxation experiment, we assume to obtain two discrete-time series of
the time-rate ofloading strain, and the stress response, respectively, as

(13.64)

Similarly, in the pertaining dynamical creep experiment, one assumes to obtain two
discrete-time series ofthe time-rate of stress loading and the strain response, respectively, as

o(to)' o(t l), , O(tN _1), o(tN)

t(to)' t(tl), , t(tN_I)' t(tN)
(13.6S)

Further, with reference to Eqn.(l3.5), or (13.6), one may express the input and output
of the dealt-with experiment, in the form ofgeneralized discrete-time series, as:
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(13.66)

Now. we have to analyze the two discrete-time series of Eqn.(13.66) in order to
determine the parameters A", .e'", (m = J. 2. '" p) in Eqn.(13.63). In doing so. and in
correspondence to the continuous-time differential function Eqn.(13.59). we introduce the
following discrete-time system (e.g.• Cadzow. 1970&1973).

(13.67)

(k=0.1.2•...)

where at) all •••• ap-/ and P" P2· ... PP and p are constant parameters. Denoting

Dyk ::; Yk-I

and

6(D) ::; a + aD + ... + a DP-Io 1 p-I

Eqn.(l3.67) can be written as

(13.68)

(13.69)

(13.70)

Representing the z-transform (see Appendix D) of {Yt} and tXt} by Y(z) and X(z).
respectively. and taking the z-transform ofEqn.(l3.70). one has

q>(z -I) Y(z) ::; 6(z -I) X(z)

6( -I)
Y(z) ::; _z_ X(z)

q>(z -I)

::; Hiz) X(z)

(13.71)
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where Biz} is called the "transfer function" of the "discrete-time system", expressed by

H (z) = 6(z -I)
d cp(z -I)

a + a
l
z -I + ... + a z -(p-I)o p-I

+ n. Z-I + ... + n. Z-(P-I) + n. z-p
PI Pp-I P p

Assume that the characteristic equation

has roots AI' A]o ... Ap• Then, Eqn.(13.72) can be written as

a + a z -I + ... + a z -p+1o I p-I

BI ~ ~= ---- + -----'~- + ... + ----''---
- A Z -I - A Z -I - AZ-I

I 2 P

where B.. (m = 1,2, .... p) are calculated by

Bm = lim Hiz) (1 - AmZ -I)
z-Am

a
O

+ a A-I + ... + a A-p + I
= I m p-I m

p

IT (1 - Ak A~I)
k=l. m=1
bm

(13.72)

(13.73)

(13.74)

(13.7S)

Taking the inverse z-transform ofEqn.(13.74), one obtains the system characteristic
series or weighting sequence of the discrete-time system as
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(13.76)

By using the function h.t(i), Eqn.(13.76), the relation between the input and output of
the discrete-time system can be expressed as

~

Yj = L hd(k) xi - k
k =0

( i, k = 0,1,2"" ) (13.77)

In searching for the relation between the characteristic function h(t), Eqn.(13.63), of
a continuous-time system and the characteristic series h.t(i), Eqn.(13.76), of the corresponding
discrete-time system, we approximate Eqn.(13.4) by

~

Y(loT . i) .. L h(k . loT) x[loT . (i - k)] . loT
k=O
~

= L h(k . AT) x[AT . (i-k)} . AT
k=O

(i k =0 1 2···), '"

From Eqn. (13.78), one has

(13.78)

~

Yj",Eh(k' loT) xi -k ' l!.T
k=O

( i, k = 0, 1, 2, .. -) (13.79)

Substituting equations (13.63) and (13.76) into equations (13.77) and (13.79),
respectively, then, by comparing equations (13.77) and (13.79), the following equation will
approximately hold

IA =-B
m AT m

1
~ =-lnA
m AT m

(m=I,2,"',p) (13.80)

To determine the parameters Bm, Am (m = I, 2, ... p) appearing in (13.76) for the
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discrete-time system, the parameters a() a" ...• ap_l ; PI' P2' .... PPin the model Eqn.(13.67)
have to be determined first. Choosing arbitrarily an order p and parameters a() a,• ... , ap_'; P,.
P2' ...,PP ofa discrete-time system and substituting them into Eqn.(13.67), one has

Y +li y + ... +liy
i p. i-I Pp i-p

(i = 1,2..... N)

(13.81)

where e/(i = J, 2 N) are the values oferror in the chosen values of the parameters ao- a,.
..., ap-I; P,. P2' PP and the order p. The errors e ;(i = 1, 2, ..., N) can. then, be expressed
as

Pp
ei = Yi - ( -Yi- ...... -Yi-p • Xi ..... Xi_p+l) eXo

eX.
(13.82)

( i=1 2··· N). . .
where,

{w? = ( -Yi- ....., -Yi-p • xi ' xi _. ' .... xi_p+. )
(13.83)

and "T" represents the transpose ofa matrix.

By minimizing the sum of the square oferrors. i.e.•
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(13.84)

one has

(13.85)

Thus, for every choice ofan order p, a corresponding {P} can be determined by
Eqn.(13.85). Accordingly, the pertaining sum ofthe square of errors can be calculated form
Eqn.(l3.84). The choice of the order p of the discrete-time system is determined by the
requirement that it would result in a minimum sum of the square oferrors.

To test the analytical model developed above, a number of numerical examples are to
follow.

Example 13.3

Consider the first order system

y + 0.2y =x(t)

Let the input x(t). onto the system, be

x(t) = 100 sin(t t.S)

(13.86)

With reference to equation (13.59), the parameters of this system are listed in Table 13.6.

TABLE 13.6

p

0.2 1.0

Then, the corresponding parameters Am and (m (m = I) which are defined in
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Eq.(13.61) can be calculated, respectively, from equations (13.60) and (13.62), and are listed
in Table 13.7.

TABLE 13.7

~,

1.0 -0.2

By employing the Runge-Kutta method (e.g., Morris, 1983), with i1T=O.OI, one
obtains two discrete-time series ofinput and output, which are shown, respectively, in Figures
13.1 and 13.8. Then, one uses discrete-time systems (DTS) of different orders, Eqn.(13.67),
to model the system. The error e2, Eqn.(13.84), for three discrete-time systems (DTS's) of
different order are given in Table 13.8.

11O---.......-~--..,.....---.-- ........-,----..,...--,

100

80

60

-20'=----!~""""":_-~-_=___:~-7:::---f:'-7;;_~:'::__7.o 2 .. 6 8 10 12 14 16 18 20
Time. t(a)

Figure 13.8 Output y (t) corresponding to the input x (t) of Fig. 13.1. First-order
system y + O' 2y= x(t) with parameters a, = 1'0. h, =02. and order p = l. "Reprinted
from Int. J. Pres. Ves. & piping 67, Yu P. and Haddad. Y. M.. On the dynamic system
identification of the response behaviour of linear viscoelastic materials. 45-54, 1996. with
kind permission from Elsevier Science Ltd, The Boulevard, Langford Lane. Kidlington OX5
1GB. UK".
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Table 13.8

Order

Error

First

0.526948E+OO

Second

0.205991E+2

Third

0.206344E+Ol

From Table 13.8, the discrete-time system offirst order is the system with minimum
error, therefore, one chooses this DTS to model the system. The parameters of this DTS as
determined from equations (13.73) and (13.85) are listed in Table 13.9.

TABLE 13.9

Parameter

Value -0.998250E+00 0.997577E-02 0.99825

where PI' ao are parameters of the discrete-time system defined in Eqn.(13.67) and AI is the
root of the characteristic equation (13.73) of the DTS. Because this DTS is offirst order, its
transfer function, Eqn.(13.72), is written as

B
"d(z) = I (13.87)

1 - A Z-I
I

where BI is calculated, according to Eqn.(13.75), as

B I = ao = 0.997577E-02

Then, according to Eqn.(t3.80), the parameters ofthe corresponding continuous-time
system can be determined as

1
Al = (lJt.T) B I = 0.997577

~ = (_1_) In A = -0.1852
I lJt.T I

(13.88)

For comparison, we list the exact and estimated values ofthese parameters in Table 13.10.
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TABLE 13.10

Parameter A,

Exact 1.0 -0.2

Estimated 0.997577 -0.1852

Thus, the estimated system characteristic function, (13.63) is written as

(13.89)
= 0.997577 e -O.18S2t

Figure 13.9 shows the exact and the estimated responses given by the first-order discrete-time
system.
Figure 13. to shows the exact and the estimated system characteristic function h(t) obtained
from the first-order discrete-time system.

120
Exact -

100
Estimated ....

RO

60--->0.
40

-20~~~~-~--+--~~,:,::---:~~-=---f:.:--~o 2 .. 6 8 10 12 14 16 18 20
Time. t(.)

Figure /3.9 The exact and estimated output y (t) from the first-order DTS. First-order
system y + O' 2y= x (t)with parameters Q , = 1'0. b, = 0·2. order p = I, and input x(t)
ofFig. 13.1. "Reprinted from Int. J. Pres. Ves. & piping 67, Yu P. and Haddad. Y. M.•
On the dynamic system identification of the response behaviour of linear viscoelastic
materials, 45-54, 1996, with kind permission from Elsevier Science Ltd, The Boulevard.
Langford Lane, Kidlington OX5 1GB, UK".
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0.016--..--or--or---'T"'""-'T"'""-'T"'""-'T"'""-..,.-E-.-
ac
"T
t
__-_--.

Estimated ...•

'=' 0.014­.c:
8.= 0.012
g
.e
u 0.01....
U
'C

JaOO8
U 0.006

O.OO4~~~-:&~-:L::---:-I:::~-+----::,&:---:~~"'::---:;-i':---:!o 0.2 0.4 0.6 0.' 1 1.2 1.4 1.6 1.8 2

Time, t(s)
Figure J3. J0 The exact and estimated characteristic function h (f) from the first-order
DTS. First-order sytem y + O' 2y= x(t)with parameters Q I =1'0, b l =0,2, order p =

1, and input x (f) of Fig. 13.1. "Reprinted from Inf. J. Pres. Ves. &piping 67, Yu P. and
Haddad, Y. M., on the dynamic system identification of the response behaviour of linear
viscoelastic materials, 45·54, 1996, with kind permission from Elsevier Science Ltd, The
Boulevard, Langford Lane, Kidlington OX5 1GB, UK".

Example 13.4

Consider the second order system

y + aty + ~y = btx + b2x

The input x(t), onto the system above, is assumed to be given by

x(t) = sin [(~ t y-I - wo)t]

where ~, Woand yare constant parameters.

Meantime, the frequency of the input signal is assumed to be

w(t) = ~ t y - I + Wo

(13.90)

(13.91)

(13.92)
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The parameters in equations (13.90) and (13.92) are assumed as shown. respectively.
in Tables 13.11 and 13.12.

TABLE 13.11

51.000

0.5

50.000 II

TABLE 13.12

y

2.0 30.0

60

Solving equation (13.90) by using the Runge-Kutta numerical method (e.g.• Morris,
1983). we obtain two discrete-time series {Xt; k=0.1.2•...•N} and {Yt; k = 0.1.2.....N} which
are shown, respectively, in Figures 13.11 and 13.12 with toT = 0.01. Here. the parameter N
represents the number of discrete points.

Input--
I

O.S

-- 0-..c
-0"

-1

o 2 3 4 ,

Time, t(5)

Figure 13. Jl Input x(t) = sin [(P t y-I - wo) t) with P= 0'5, r= 2-0 and 610 = 30·0
tosystem y + a l Y+ a2y =bl X+ b2x with a l =51'0, a2 = 50'0. "Reprintedfrom
Int. J. Pres. Ves. & piping 67, Yu P. and Haddad, Y. M., On the dynamic system
identification of the response behaviour of linear viscoelastic materials, 45-54, 1996, with
kind pennission from Elsevier Science Ltd, The Boulevard, Langford Lane. Kidlington
OX5 1GB, UK".
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0.3,.----.....------,,...------..,...-----r-----.,
Output-

0.2

0.1

o

-0.1

-0.2

s..2 3
Time. t(s)

I
-0.3 '--__--JL....-__--J. --'- ........ ..J

o

Figure J3. J2 OutputY (f) corresponding to the input shown in Fig. 13.11. "Reprinted from
Inf. J. Pres. Ves. & piping 67. Yu P. and Haddad. Y. M.• On the dynamic system
identification of the response behaviour of linear viscoelastic materials. 45-54. 1996. with
kind permission from Elsevier Science Ltd. The Boulevard. Langford Lane. Kidlington OX5
1GB. UK".

Using discrete-time systems (DTS) of different orders. Eqn.(13.67), to model the
system, the error e2, Eqn.(13.84). for discrete-time systems ofdifferent orders are shown in
Table 13.13.

TABLE 13.13

Order First Second Third Fourth

Error 0.287038E-2 0.236837E-05 0.21 1482E-04 o.284848E-04

Based on the results shown in Table 13.13, we choose the second order DTS, of
minimum error, to model the system. The parameters characterizing Eqn.(l3.67) are
determined, by (13.85), as presented in Table 13.14.
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TABLE 13.14

parameters

Value -1.601352 0.605265 0.109850 -0.104986

The roots of the characteristic equation Eqn.(13.73) ofthe discrete-time system of the
second order are then determined and are given in Table 13.15.

TABLE 13.15

Roots

Value 0.989929 0.611423

Accordingly, the pertaining parameters 8 m (m = 1,2) corresponding to Eqn.(13.75)
can be determined and are shown in Table 13.16.

TABLE 13.16

0.0099283 0.09992170

The parameters of Eqn.(l3.62) can be finally identified form Eqn.(13.80) and are
given in Table 13.17.

TABLE 13.17

Parameter

Estimated

Exact

0.992830

1.00000

9.992171

10.00000

~I

-1.012206

-1.00000

-49.196643

-50.00000

Figure 13.13 shows the exact and estimated output y(t).
Figure 13 .14 shows the exact and estimated values of characteristic function h(t).
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Exact output -­

Estimated output ¢

0.2

0.1

-0.1

-0.2

-0.30 :2 J 4 5

Time, t(l)
Figure 13.13 The exact and estimated outputy (t) corresponding to the input shown in Fig.
13.11. "Reprinted from Int. J. Pres. Ves. & piping 67, Yu P. and Haddad, Y. M., On the
dynamic system identification of the resp>nse behaviour of linear viscoelastic materials, 45­
54, 1996, with kind permission from Elsevier Science Ltd, The Boulevard, Langford Lane,
Kidlington OXS IGB, UK".
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1.4

1.2

1

':'
U 0.8
Co

~ 0.6

0.4

Exact creep
Estimated creep ¢

0.2

o :2 4 6

Time, t(1)
8 10

Figure 13.14 The exact and estimated creep curves corresponding to the input shown in
Fig. 13.11. "Reprinted from Int. J. Pres. Yes. & piping 67, Yu P. and Haddad, Y. M.,
On the dynamic system identification of the response behaviour of linear viscoelastic
materials, 45-54, 1996, with kind permission from Elsevier Science Ltd, The Boulevard,
Langford Lane, Kidlington OX5 1GB.
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CHAPTER 14

VISCOELASTIC WAVES AND BOUNDARY VALUE PROBLEM

14.1. Introduction

When a localized disturbance is applied suddenly in a medium, it will soon propagate to other
parts of this medium. This simple fact constitutes a general basis for the interesting subject
of"wave propagation". Well-cited examples ofwave propagation in different media include,
for instance, the transmission ofsound in air, the propagation of seismic disturbances in the
earth, the transmission of radio waves, among others. In the particular case when the
suddenly applied disturbance is mechanical, e.g., a suddenly applied force, the resulting waves
in the medium are due to stress effects and, thus, these waves are referred to as "stress
waves" . Our attention in this chapter is focussed on the propagation of stress waves in
viscoelastic solid media. In our representation, we consider the solid medium to be a
continuum. Hence, the mechanics ofwave motion in the medium will be dealt with from a
continuum mechanics point ofview. The basic concepts ofcontinuum mechanics have been
presented in Chapter 2. In such continuum, the solid medium, the disturbance is generally
considered to spread outward in a three-dimensional sense (Graff, 1975). A wavefront is
considered to be associated with the outward propagating disturbance. Consequently,
particles of the medium that are located ahead of the wavefront are assumed to have
experienced no motion, meantime, particles that are located behind the front are visualized
to have experienced motion and may continue to vibrate for some time.

14.2. Internal Friction and Dissipation

Real materials are never perfectly elastic. Thus, when a material specimen is subjected to
dynamic loading, part of its mechanical energy is converted into heat. The various micro­
structural mechanisms by which the mechanical energy is converted into heat is conventionally
referred to as "internal friction" Kolsky, 1963). Due to the complexity of the
microstructures, several microscopic and macroscopic dissipative mechanisms exist in the
material. The extent ofenergy loss would generally depend on the input load characteristics,
the environmental conditions, as well as the inherent and macroscopic properties of the
material specimen.

An internal dissipative mechanism in case ofpolycrystalline solids, for instance, is due
to the variation in crystallographic orientation of neighbouring grains. This results in
nonuniformity ofthe distribution oflocal strains when the material specimen is loaded. This
is in addition to the nonuniformity of local strains that may be caused by imperfections in the

217
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material (e.g., micro- cracks, fissures, flaws, foreign inclusions and grain boundaries).
Consequently, a nonuniform temperature field may exist and thermal currents of varying
magnitudes would flow within the crystal lattice. Other microscopic mechanisms could be
also responsible for the transfer of energy into heat. One mechanism is due to dislocations,
that is the movement of regions of disarray in the crystals (see, e.g.,Orowan, 1934; Polanyi,
1934 and Bradfield, 1951). An additional microscopic mechanism is due to the motion of
solute atoms in the crystal lattice on the application of external loading (e.g., Gorsky, 1936
and Snoek, 1941). A possible microscopic mechanism which attenuates stress waves in
polycrystalline solids is "scattering" (e.g., Kolsky, 1963). This mechanism may occur in a
polycrystalline solid when the incident wavelength becomes comparable with the grain size.
In this, Mason and McSkimin (1947), for instance, found that when the wave length is long
compared to the grain size, the attenuation is inversely proportional to fourth power of the
wavelength (see Rayleigh, 1894).

On the macroscopic level, the following effects of internal friction are particularly
important.

{i} Static Hysteresis
This is primarily due to the inelastic characteristics of the material. In this case, when a
material specimen is taken through a stress cycle, it would show a "hysteresis loop", that is
the stress-strain curve for an increasing stress input does not retrace its earlier downward
path, if the material specimen were reloaded in an exact manner reflecting the unloading. The
area enclosed by this loop represents mechanical energy which has been dissipated into heat.
Although this effect may seem to be insignificant for some materials under static loading, it
could be a pronounced factor in the attenuation of stress waves travelling in such materials.
In the latter case, each layer of the material is taken through a loading cycle. For sinusoidal
oscillations, for example, the number of hysteresis cycles is dependent on the frequency and
the latter may be of the order ofmillions per second.

{ii} Viscous Loss
Such a loss is particularly noticeable in case of polymers with organic long chain molecules.
The internal forces here are ofa viscous nature and imply that the mechanical behaviour of
such materials is a function of the rate of strain (see, e.g., Tobolosky, Powell and Eyring,
1943; Alfrey, 1948 and Kolsky, 1963). In case ofviscoelastic materials, it is recognized that
stress waves whose periods are close to the relaxation times of the material are severely
attenuated when passing through it (Kolsky, 1963). In metallic materials, however, the
dissipative mechanism tends to be more related to their macroscopic thermal properties
(Zener, 1948).

(iii) Stress Wave Motion Effect
In this, the compression and dilatation due to the stress wave motion in the material produce
temperature gradients. Thus, the finite thermal conductivity of the solid would be an
influential mechanism by which the mechanical energy of waves may dissipate as thermal
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energy.

Internal friction in solids is often defined by the so-called "specific loss" or,
alternatively, "specific damping" of the specimen. It is denoted by the symbol D and is
conventionally expressed by

D = !J.W
W

In the above relation, !J.W is the energy dissipated upon subjecting the specimen to a stress
cycle and W is the elastic energy stored in the specimen during this cycle. The magnitude
of D depends on the amplitude and the speed of the cycle, other boundary conditions, as
well as the past history of the specimen. The reader is referred to Kolsky (1963) for other
definitions of internal friction and its measurement.

Mechanical dissipation is particularly pronounced in case of viscoelastic materials,
particularly those of high polymeric origin. In most of these materials, the presence of
mechanical dissipation can effectively change the nature ofwave motion in them. In addition
to the significant mechanical dissipation that can occur in viscoelastic materials, it is well­
recognized that these materials are "dispersive". In view ofthe latter property. phase velocity
of a wave propagating in a viscoelastic material will depend on wave frequency. More
specifically, waves of high frequency will propagate in viscoelastic materials with a greater
phase velocity than if these waves have a low frequency. Consequently, a mechanical
disturbance would continually change in shape during its motion in a viscoelastic medium.
Further, the attenuation ofhigh frequency waves in viscoelastic materials is greater than that
of waves of low frequency. In case of sinusoidal waves, for instance, the above two
characteristics ofwave motion in a viscoelastic medium would translate into a differential
absorption as well as a differential dispersion ofthe Fourier components of the pulse (Kolsky,
1963).

14.3. Viscoelastic Wave Motion

As realized in Section 2 of this chapter, the constitutive equation for a particular material
must be combined with the equations of motion in order to solve a specific problem
concerning the wave propagation in such material. In contrast to the situation in linear
elasticity, the viscoelastic constitutive equation, even in the linear case, is complex by virtue
ofthe existence ofintegro-differential terms in this equation and the time-dependency of the
viscoelastic material functions involved. This added complexity has limited quite significantly
the progress in dynamic viscoelasticity in general. Consequently, the majority of problems
that have been successfully treated concerning viscoelastic wave phenomena have been limited
to simple material representation. A large number ofviscoelastic wave propagation problems,
within the linear response behaviour of the material, have been attempted by different
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researchers using a correspondence with an available or deductible solution of an analogous
linear elastic problem.

Kolsky (1956,1960) presented a comprehensive review of the subject of viscoelastic
waves in solids from both theoretical and experimental points ofview. In his treatment ofthe
subject matter, Kolsky employed the superposition property of solutions in linear
viscoelasticity through the application of Fourier analysis. Kolsky (1960) considered, for
instance, the motion of a longitudinal disturbance along a thin filament. In this context, the
equation ofmotion along the filament is expressed by

00 _ (02U )- -p-
dx ot 2

where 0 is the longitudinal stress, x is the distance along the filament, u is the longitudinal
displacement and p is the density. For a sinusoidal wave propagating in a linear visco­
elastic solid, the stress is related to the strain through a complex modulus representation (see
Chapter 3),

o = (E1 + iE2 )€ = (E1 + iE2): (14.3)

Combining (14.2) and (14.3), then

(14.4)

The solution of (14.4) for a propagating sinusoidal wave of frequency w/21t, whose
displacement at the origin is Uo cos wt, is expressed as

where,

u(x) = Uoexp( - at) cos[w(t -xlc)]

c = (E'Ip}1/2 sec at2

a = wlc tan 6/2

(14.5)

(14.6)

(14.7)
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(14.8)

(14.9)

On the assumption that, for most polymers, tan 6 « I, then, sec 6/2 '" 1 and tan 6/2 '" \12
tan 6. Thus, (14.6) and (14.7) are, respectively, reduced to

c '" JE ./p and a = ( ~) tan 6 (14.10)

(14.11)

where c and a are referred to as "propagation constants". Accordingly, if the values of the
moduli E1 and ~ (or E· and tan 6) are known from experiment over a sufficient frequency
range, the displacement of the disturbance along the filament may be calculated by (14.5) with
the use of(14.10).

From an experimental point of view, two types of disturbance inputs are often
considered for the study of wave propagation in materials, i.e., sinusoidal waves and pulse
inputs (e.g., Hi11ier, 1949, 1960, Hi11ier and Kolsky, 1949 and Kolsky, 1960).

14.3.1. SINUSOIDAL INPUTS

For this type of disturbance input, continuous trains, of small amplitude of vibration, are
propagated along filaments of the material. As introduced in the foregoing, if the
displacement input on one end of the specimen is Uo cos wt, then, the displacement at a
distance x along the filament is given by (14.5). Hence, by measuring the amplitude and
phase ofthe vibration at different points along the filament, the propagation constants c and
a can be determined from (14.5). Consequently E· and tan 6 (or E1 and E2) as functions
of frequency w/21t are found from (14.6) or (14.7). Hillier and Kolsky (1949) and Bailon
and Smith (1949), for instance, have used this method for the determination of the dynamic
properties ofviscoelastic materials such as rubber and plastics in the range of 102 - 103 cycles
per second (e.g., Kolsky, 1960).

For a linear viscoelastic solid, provided that E1 is not changing too rapidly with
frequency, one may write (Ferry and Williams, 1952) that

dE. 2E2-"'-
dw 1tW
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which can be written in view of(14.9) as

d(log E,) (2) lI.---'-" - tan u
d(logw) 1t

(14.12)

For most polymers, at temperatures near their transition from the rubber-like to the glassy-like
temperature, tan ~ varies comparatively little with frequency (see, e.g., Nashifet aI., 1965).
For this case, one may assume, that tan a is constant (i.e. independent of frequency). Under
the latter assumption, Eqn. (14.12) may be integrated to give

(14.13)

where E,(wo) is the value of E. at a fixed reference frequency wJ21t. Further, if one
assumes, as mentioned before, that tan ~ « I, one can express the propagation constants
a and c, with reference to (14.6) to (14.10), as

and a=~tan~
2c

(14.14)

Meantime, equation (14.13) is approximated further as

(14.15)

(14.16a)

whereby the exponential term in (14.13) has been expanded asymptotically and the first two
terms in the expansion are retained. Accordingly, one writes with reference to (14.14) that

c· col' + (2 (tan a)lo} IOg( ~)r
where,

(14.16b)

Fig. 14.1 (Kolsky, 1960, Experimental results after Hillier, 1949) supports a linear relation
between c and log w for polyethylene in the frequency range shown.
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Figure 14.1. Experimental values of phase velocity c and log a (Hillier, 1949) plotted
against log frequency. for polyethylene. From: Kolsky, H. (1960) Viscoelastic waves, Int.
Symposium on Stress Wave Propagation in Materials, Ed. N. Davids, Interscience
Publishers, New York, pp. 59-90. Reprinted with permission.

With reference to (14.10), if tan II is constant, the attenuation constant ex would be
proportional to wlc. Further, since the phase velocity c varies comparatively slowly with
frequency, over a limited frequency range, Eqn. (14.16), one may expect that the attenuation
constant ex, Eqn. (14.14), to be proportional to the frequency. Accordingly, log ex should
vary linearly with log w as shown by the graph by Hillier (1949) in Fig. 14.1.

For the study ofviscoelastic wave propagation at higher frequencies, pulsed ultrasonic
methods are used (see, for example, Ivey et ai, 1949 and Cunningham and Ivey, 1956). The
experimental practice of the technique could vary quite significantly, however, in principle,
a finite number of sinusoidal cycles of frequency w/21t are introduced in one end of the
specimen and the resultant wave motion is recorded at a number ofpoints along the length
ofthe specimen. From a measurement oftransient time and amplitude ratio, estimates ofthe
phase velocity c(w) and the attenuation constant ex(w) can be made. The ultrasonic
technique has the advantage of being relatively simple. It is particularly powerful for
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investigating the wave propagation properties in elastic materials. In case of viscoelastic
materials, however, the technique unfortunately suffers from certain theoretical difficulties of
interpretation as pointed out by Kolsky (1960): The time of transit of the pulse depends on
the group velocity of the wave packet, and for a dispersive medium, this is, in general,
different from the phase velocity c. In the absence ofattenuation, these two velocities can
be related (Kolsky, 1963), however, in a medium which is dissipative as well as dispersive,
the relation between group velocity and phase velocity is not clear yet.

14.3.2. PULSE INPUTS

Few experimental research efforts have been focussed on the study ofpulse propagation in
viscoelastic materials. In the early work ofHillier (1949) and Hillier and Kolsky (1949,1956)
steady-state longitudinal vibrations were induced in prest retched filaments (0.06 cm. in
diameter) ofpolythene, neoprene and nylon by means ofa transducer element attached to one
end ofthe material specimen. The experimental studies were carried out within low frequency
range < 16 kc/s. The response of the filament was determined at various points along its
length by means ofa crystal pick-up. In this, measurements were taken of the variations in
the vibration amplitude and the phase. After allowing for the effect ofpick-up (see Hunter,
1960), the experimental results included both phase velocity and attenuation at a number of
frequencies. Kolsky (1956), presented experimental results after Hillier (1949) which show
the phase velocity and attenuation in polythene (I.C.I. Alkathene grad 20) against frequency
for experiments carried out at W'e.

Kolsky (1954 a and b, 1956) has carried out a number ofexperiments on the change
ofthe shape oflongitudinal stress pulses as they travel along rods ofvarious plastics. These
pulses were produced by the detonation of small explosive charges with initial durations of
about two or three microseconds. Figure 14.2 shows oscillograph records which were
obtained by Kolsky (1960) with rods ofpolymethyl methacrylate and polyethylene. As noted
by Kolsky (1960), with the polyethylene specimen, after two or three reflections, the length
ofthe pulse had become more than twice the length of the specimen, with the result that the
movement ofthe ends of the specimen become continuous. Figure 14.3 (due to Kolsky, 1960)
shows the curves of particle velocity with the passage of time for pulses which had
propagated in polyethylene rods 30, 60 and 90 cm in length. It can be seen in the figure that
the pulses become progressively flatter, but retain an asymmetrical shape.

14.4, Wave Propagation in Semi-Infinite Media

In this section, we deal with the problem of determining the stress distribution in a semi­
infinite viscoelastic rod subject to dynamic loading. The problem was examined by Lee and
Morrison (1956). In Lee and Morrison's work, the stress and velocity distributions associated
with the propagation ofan impulsively applied velocity and stress along viscoelastic rods, as
presented by different mechanical models, were determined. Morrison (1956) also considered
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analytically the wave propagation in a viscoelastic rod of the Voigt model type and also
studied viscoelastic materials with three-parameter models. In an earlier work, Hillier (1949),
see also Hillier and Kolsky (1949), studied the motion of longitudinal sinusoidal waves along
a viscoelastic filament assuming a Maxwell solid, a Voigt solid and a three-element model
representations. Lee and Kanter (1953), considered the stress distribution in a rod of
Maxwell material subjected to a mechanical impact. Glauz and Lee (1954), on the other
hand, used the method of characteristics to determine the stress in a viscoelastic material
made of a four-parameter model.

Figure J4.2. (a) Oscillograph record ofdisplacement at end of polymethyl methacrylate rod
46 em long and 1.25 em diam. when 5 mg charge of lead has been detonated at opposite
end. Period of timing wave is 500 microseconds. (b) Oscillograph record, similar to (a),
for polyethylene rod 20 em long and 1.25 em diam. From: Kolsky, H. (1960) Viscoelastic
Waves, Int. Symposium on Stress Wave Propagation in Materials, Ed. N. Davids,
Interscience Publishers, London, pp. 59-90. Reprinted with permission.
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Figure 14.3. Curves ofparticle velocity distributions for pulses that have travelled through
different lengths of polyethylene rods. A, 30 em; B, 60 em; C, 90 em. From: Kolsky, H.
(1960) Viscoelastic Waves, Int. Symposium on Stress Wave Propagation in Materials, Ed.
N. Davids, Interscience Publishers, London, pp. 59·89. Reprinted with permission.
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8

2

Consider a semi-infinite rod as shown in Fig. 14.4 where x ~ 0, with the x-coordinate
measured along the length ofthe rod. In this figure, x(t) denotes the position ofa section of
the rod at time t and u (x,t) is the displacement of this section in the direction of increasing
x. Let, 0 (x, t) denote the nominal compressive stress transmitted across the section x of the
rod at time 1. € (x, t) designate the nominal compressive strain corresponding to 0 (x,t)
above . p is the mass density ofthe material the governing equation ofmotion, in the absence
ofbody forces, in the x-direction is

or, in a more compact form,

-0
x (14.17)
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where a subscript denotes partial differentiation with respect to the corresponding variable.

x
o

I
I
r-- u(x.t)
I
I

x(t)

Figure 14.4. Stress wave propagation in a semi-infinite rod.

The nominal compressive strain e(x,t) is written in terms of the displacement u as

(14.18)

The particle velocity v (x, t) is expressed in terms ofthe displacement u as
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(14.19)

The semi-infinite rod is considered to be initially unstrained and at rest when, at t=O, the end
x=O is subjected to a mechanical impact (disturbance) with either a constant stress or a
constant velocity. In either case, the stress or the velocity at the end x=o is specified. The
governing boundary conditions are

° = 0oH(t) or v = voH(t), at x = 0 (14.20)

where 00 is the applied constant stress, Vo is the applied constant velocity and H(t) is the
Heaviside step function, that is

{
I for t>O

H(t) =
o for t<O

In addition to equations (14.17) to (14.20), the constitutive equation for the particular
viscoelastic material must be included in the process of determining the stress distribution in
the semi-infinite rod.

14.5. The Wave Equation in Linear Viscoelasticity as Based on Boltzmann's
Superposition Principle

Consider a homogeneous, isotropic rod and let Xj (i=I,2,3) denote the Cartesian coordinates
ofany material particle p in the deformed (current) state. For the longitudinal motion ofthe
rod in the XI-direction, the displacement is expressed as

(14.21)

where e l is the unit vector component along the XI-axis. It is assumed here that the
displacement u(x,t) is a continuous function of x,t for all x,t. In this case, EIt(X"t) and
0u(x1,t) will be the only corresponding nonvanishing components of the strain and stress,
respectively, where

(14.22)

and the stress is connected to the strain via the Boltzmann's hereditary creep and relaxation
constitutive equations introduced in Chapter 12 (see, also, Haddad, 1995) Recalling the latter
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two equations, one may write in the same order that

(14.23)

and

(14.24)

Meantime, the equation ofmotion can be written, in the absence ofbody forces as

(14.25)

Combining now (14.23) and (14.25), the creep wave equation, in the absence ofbody forces,
can be written as

2 2 I 2ou(x,t) __1 0 u(x,t) __1 JF(t _'t) 0 u(x,t)d't
ox 2 c2 ot 2 c2 0't2o

where c2 = E/p

(14.26)

(14.27)

(14.28)

Further, with reference to (14.24) and (14.25), the relaxation wave equation, in the absence
ofbody forces, is

_I 02U(X,t) _ 02U(X,t) = JI R(t -'t) 02U(X,t) d't
c 2 ot 2 ax 2 ax 2o

with c2:E/p

The Laplace transforms of the wave equations (14.26) and (14.28) read, respectively, as
follows
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and

d2 _ ( S) 2{ _ }-- U(X,S) = - 1 +F(s) U(X,S)
dx 2 C

d
2- (S)2{ - }'_-U(X,S) = - 1 +R(s) - u(x,s)
dx 2 C

(14.29)

(14.30)

Considering, for instance, equation (14.29) corresponding to the creep case, the
general transform solution can be written (Graffi, 1982) as

- {xs~}u(x,s) = A(s)exp ~v 1+F(s)

+ B(S)exp{ -;s b +F(S)}
(14.31)

where A(s) and B(s) are functions of the Laplace parameter s. Both A(s) and B(s) are to
be determined.

At this point, we shall assume that the rod is semi-infinite in extent and initially
undisturbed in the sense that

u(x,O) = au~~,Q) = 0

The following boundary conditions are further assumed

u(O,t) = uo(t) t ~ 0

(14.32)

Lim u(x,t) = ° t ~ ° (14.33)

In this case, one must impose that A(s)=O in (14.31) in order to avoid the exponential
increase with x of the first term in this equation. Thus, B(s) in (14.31) will assume the value
of the Laplace transform of the input Uo(t) and (14.31) becomes

(14.34)
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the inversion of the Laplace transforms in (14.34) leads to

u(X,t) = H(t-x!c)e ClxlC {uo(t-xlc)
t-x1c

+ f F(x,t -t -x!c)uo(t)dt}
o

(14.35)

in which H(·) is the Heaviside step function and where the translation and convolution
formulae for the Laplace transform (see Appendix C) were used. Another representation of
the solution (14.35) is due to Mainardi and Turchetti (1975,1979). Mainardi and Nervosi
(1980) have also considered the inclusion of such presentation in their treatment of transient
waves in a viscoelastic rod. Similar treatment may be considered for the relaxation case based
on equation (14.30).

14.6. The Wave Propagation Problem as Based on the Correspondence Principle

In this section, a presentation is given, following Chao and Achenbach (1964), on the
utilization of the correspondence principle to solve wave propagation problems in linear
viscoelasticity when the solutions of the corresponding elastic problems are known.

The constitutive equations for an isotropic, elastic solid are given in Chapter 6 With
reference to these equations, it is recognized that for an isotropic, elastic solid, two
independent constants completely define the stress-strain relations. If the shear modulus J.l
and the bulk modulus K, for instance, are chosen, the constitutive equation, for a linear elastic
solid, can be written in the following tensorial form

(14.36)

On the other hand, the constitutive relations for the creep of an isotropic, viscoelastic solid
can be written as

I do..(t)
3K e..(t) = o..(t) + f F2(t -t) _II- dt

II 1\ dt

(14.37a)

(14.37b)

in which FlO and Fk) are the creep functions governing, respectively, the shear and
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dilatational behaviours of the medium. The treatment of stress-wave propagation in a
viscoelastic solid which obeys the constitutive relations leads to complicated mathematical
analysis in that the solution of partial integro-differential equations is involved. Volterra
(1931) considered the problem by adopting a functional analysis approach, but it seems that
the results of the theory have found, so far, little application in the study of the dynamic
behaviour of viscoelastic materials (see, e.g., Kolsky, 1963).

Chao and Achenbach (1964) discussed the application of Laplace transform to
viscoelastic wave propagation problems using the well-known correspondence principle
(Bland, 1960 and Schapery, 1974). It was shown by these authors that under the restricted
condition ofconstant Poisson's ratio, a class ofviscoelastic problems may be solved provided
that the solution of the corresponding elastic problem is known. Applying Laplace transform
to (14.37a) and (14.37b), with some additional manipulation, yields

Ojj = [K(S) - ~ U(S)] E kk6jj + 2jj(s)£ij

where

jj(s) =
,..

= ,.. P(s)
l+sF)(s)

and

K(s)
K

= K y(s)=
1 +sF2(s)

where s is the Laplace transform parameter.

(14.38b)

(14.38c)

Meantime, the Laplace transform of the stress equation ofmotion, in the absence of body
forces, can be written as,

(14.39)

(14.40)

where p is the mass density of the material.

Combining (14.38) and (14.39) yields the governing differential equations for the
transformed displacements of a viscoelastic medium, that is

(- 1-)- - 2-K + -" u·.. + U u·.. = p s u·3 ~ JJI OJ! 0
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Decomposing the displacement vector u into dilatational and rotational parts, i.e.

U=V+(,)

where

v.. = 0 and (,).. = (,). .
1.1 I.J J.I

Accordingly, the transformed equations (14.40) will be satisfied if

S2 -
v... = -v.
'oJJ - 2 I

c t

S2 ­
(,)... = - (,).
'oJJ - 2 Ic2

(14.41)

(14.42)

(14.43)

(14.44)

where c\ and c2 are the transformed velocities for the dilatational and rotational waves
respectively, i.e.

(14.45)

(14.46)

The same treatment may be applied for the isotropic, elastic medium if the constitutive
equation (14.36) is used instead of(14.38a). On the other hand, the analogous equations to
(14.43) and (14.44) for the isotropic, elastic body are obtained if 'ii(s) and R(s) in (l4.38b)
and (14.38c) are replaced by the elastic moduli ~ and K respectively. The above treatment
was presented by Chao and Achenbach (1964) with the following conclusion: The Laplace
transforms ofthe solutions for a viscoelastic wave propagation problem can be obtained from
the Laplace transforms ofthe solutions for the elastic problem with the same boundary and
initial conditions by replacing the shear modulus ~ by its Laplace transform 'ii(s) and the
bulk modulus K by its Laplace transform R(s).

The above conclusion is, in essence, a form of the well-known correspondence
principle; that is the problem ofobtaining solutions concerning the response behaviour of a
linear viscoelastic solid is reduced to a problem of inverting the Laplace transforms of the



www.manaraa.com

234

corresponding elastic solutions.

Chao and Achenbach (1964), see, also, Achenbach amd Chao, 1962, considered the
application ofthe above approach to the study of the displacement and stress fields inside an
infinite, viscoelastic body of a constant Poisson's ratio. In their treatment, the authors
assumed the input force to be time-dependent and concentrated at one point. Two illustrative
examples were subsequently given. In the first example, the displacement components in the
radial and the vertical directions on the surface of a viscoelastic half-space loaded suddenly
by a vertical force of constant magnitude were evaluated. In the second example, the radial
stress for the problem ofthe expanding spherical cavity in an infinite viscoelastic medium was
dealt with.

14.7. Nonlinear Viscoelastic Wave Propagation

Although considerable research efforts have been made over the last decades towards
characterization ofthe nonlinear viscoelastic nature ofmaterials (e.g., Haddad, 1995), interest
in the study ofwave propagation in such materials did not develop until recently. Most of the
studies on wave propagation in nonlinear viscoelastic materials dealt essentially with the one­
dimensional motion within the context of the general constitutive theory ofmaterials with
fading memory. These studies have considered the propagation of both acceleration and
shock waves in viscoelastic media with the objective of establishing the governing conditions
for their growth or decay. Such governing conditions implied the existence of steady waves
in the dissipative viscoelastic media. An initial study in the area of nonlinear wave
propagation is due to Malvern (195 I). Malvern's approach is concerned with the motion of
a plastic wave in a ductile material (e.g. a metal with a strain memory effect). As a special
case, however, Malvern considered the motion ofsuch type ofwave in a model ofviscoelastic
solid. The modes ofpropagation ofacceleration waves in different media have been studied,
among others, by Truesdell and Toupin (1960), Thomas (1961), Hill (1962), Varley and
Cumberbatch (1965), Coleman, Gurtin and Herrera (1965), Coleman and Gurtin (1965) and
Bailey and Chen (1971). Varley (1965) discussed the mode of propagation of an arbitrary
acceleration wave as it advances into a finitely strained viscoelastic material which, until the
arrival of the front is undergoing any admissible deformation. The viscoelastic material is
seen in Varley's work to be generally inhomogeneous and anisotropic. Coleman, Gurtin and
Herrera (1965) and Coleman and Gurtin (1965) dealt comprehensively with the theory of
nonlinear viscoelastic wave propagation in a series of research papers. In the first two papers
of the series, the authors dealt with the propagation of shock and acceleration fronts in
materials with memory resting on the assumption that the stress is a functional of the history
ofthe deformation gradient with the exclusion of any thermal influences. In subsequent two
papers (Parts III and IV of the series), Coleman and Gurtin (1965) have allowed the stress
to be affected not only by the history of strain, but also by the history of a thermodynamic
variable such as the temperature (see, also, Coleman, 1964 and Coleman and Gurtin, 1966).
An extension of this work to include mild discontinuities was considered by Coleman,
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Greenberg and Gurtin (1966). The problem ofpropagation ofsteady shock waves in nonlinear
thermoviscoelastic solids has been also considered, for instance, by Ahrens and Duvall (1966),
Greenberg (1967), Chen, Gurtin and Walsh (1970), Schuler and Walsh (1971), Dunwoody
(1972), Huilgol (1973) and Nunziato and Walsh (1973). In this, Nunziato and Walsh (1973)
expressed the governing equations in terms of material response functions which can be
determined from shock wave, thermophysical, and bulk response data. The results of the
analysis were compared with experimental steady wave studies concerning the solid polymer,
polymethyl methacrylate (PMMA). The existence and propagation of steady waves in a class
ofdissipative materials were considered also, among others, by Greenberg (1968) and Schuler
(1970).

On the experimental side, research in the field of shock wave physics has made it
possible to produce high amplitude strain waves. Barker and Hollenbach (1970) and Schuler
(1970) used a gas gun (Barker and Hollenbach, 1964 & 1965) to produce a planar impact
between two plates. This has been parallel with the development ofadvanced recording and
measurement techniques such as laser inter- ferometry (Barker and Hollenbach, 1964, 1965
& 1970 and Barker, 1968). Such experimental efforts were particularly effective in the
production ofone-dimensional strains ofvery large amplitude, meantime, they allowed wave
motion to be observed with high resolution and accuracy. Chen and Gurtin (1972 a and b)
discussed the use of experimental results concerning steady shock waves to predict the
acceleration wave response of nonlinear viscoelastic materials. Meantime, Nunziato and
Sutherland (1973) used acoustic waves for the determination of stress relaxation functions
ofa class ofpolymeric materials.

Schuler, Nunziato and Walsh (1973) presented a comprehensive review of some
theoretical and experimental developments in the domain of nonlinear viscoelastic wave
propagation. Confining their attention to the case ofone-dimensional strain, they reviewed
theories ofshock and acceleration wave propagation in materials with memory and discussed
the theoretical predictions with some experimental results for the polymeric solid PMMA.
In this, these authors were particularly influenced by the work of Coleman, Gurtin and
Herrera (1965 a and b), Coleman and Gurtin (1965) and Chen and Gurtin (1970). We follow
closely the work of these authors in the following presentation.

14.7.1 KINEMATICS AND BALANCE LAWS IN ONE-DIMENSIONAL MOTION

Kinematics
In the case of one-dimensional motion, we identify the spatial position of a material point
(particle) at time t by the coordinate x (X,t). The counterpart of this position coordinate
in the reference configuration, R, is X(x,t). It is assumed that the coordinate function x(X,t)
is continuous for all X and 1. The corresponding displacement function u(X,t) is, thus, a
continuous function of x,t for all X and t. Assuming suitable smoothness of the motion
(Schuler, Nunziato and Walsh, 1973) the particle velocity is expressed by
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av(t) = - u(X,t) = a\ u(X,t)
at

and the compressive strain is expressed by

-a£(t) = - u(X,t) = -ax u(X,t)ax

(14.47)

(14.48)

A wave propagating in such continuous medium may be seen (Coleman and Gurtin, 1965) as
a family of points X(t), - co < t < co, where X(t) is the material point in the reference
configuration R at which the wave front is to be found at time t. Thus, the spatial position
of the wave may be expressed by

i(t) = ~ ( ~(t),t) (14.49)

with X(t)designating the spatial position of the wave at time t.

The "wave velocity" V(t) at time t is defined by

d t\ d 1\( t\ )V(t) = - x(t) = - x X(t),t
dt dt

(14.50)

The wave velocity V(t) is identified with respect to an external fixed frame of reference (i.e.,
as seen by an external observer at rest).

Meantime, the wave "intrinsic velocity" U(t) is defined as the velocity of propagation of the
wave front relative to the material in the reference configuration. It is expressed as

U(t) = -! :;(t)
dt

(14.51)

where X(t), as defined earlier, is the coordinate of the material point in the reference
configuration R at which the wave front is to be found at time t.

The "material trajectory" of the wave front is given here the notation O(t). It is defined as
the set of ordered pairs X(t), (t), - co < t < co .
Jump Discontinuity. Coleman, Gurtin and Herrera (1965), following the standard notation
used earlier by Truesdell and Toupin (1960), advanced that if a function f(X,t) has ajump
discontinuity at X =X(t), one may define the jump in f(X,t), labeled below by [fl, across
the trajectory of the wave n (t) at time t by



www.manaraa.com

If) = Lim

X~X(tr

fl:X,t) - Lim

X~X(t)'

fl:X,t)
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(14.528)

This expression may be also written in the form

[f)=C-f' (14.52b)

where, with the wave intrinsic velocity U(t) > 0, r and f are the limiting values of the
function fl:X,t) immediately ahead and behind the wave front respectively. The associated
"condition ofcompatibility" to is expressed (Truesdell and Toupin, 1960) as

(14.53)

In the present section, the function f: f (X, t) is used to designate the kinematical function
x (X, t) or one of its derivatives.

Balance Laws
Mass Balance. In one-dimensional motion, the mass balance is expressed with reference to
(1.2:3) as

1
p(X,t)/po = ---

1 -t:(X,t) (14.54)

(14.55)

where p (X, t) is the current mass density and Po is the mass density in the reference
configuration of the material specimen.

Balances ofLinearMomentum andEnergy. With the exclusion ofexternal body forces, heat
conduction and external heat supply, the balances of linear momentum and energy are
expressed respectively as

d"1l
dt f Po v(x,t)dx = o(Xp,t) - o(xll,t)

Xa

and
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(14.56)

where 0 is the one-dimensional stress and e is the internal energy per unit volume.

Clausius-Duhem Inequality (Second Law of Thermodynamics)
It can be expressed as (see, also, Chapter 4)

Xp

-!Jp C;(x,t) ~ 0
dt
X.

where C; is the specific entropy per unit mass.

14.7.2. MATERIAL RESPONSE FUNCTIONS

(14.57)

Following Schuler, Nunziato and Walsh (1973), we consider a strain jump e suddenly
applied to a material point which has been unstrained for all past times, i.e.,

(14.58)

The instantaneous stress, denoted by 01> corresponding to the strain jump, is expressed in the
following functional format

(14.59)

In (14.59), the constitutive functional F(e) is assumed to be twice continuously
differentiable, i.e., a~F{e(t-t)} and a/F{e(t-t)} exist where the partial differentiation is
with respect to the present value of strain e(t); see, e.g., Haddad (1995).

The stress-relaxation function corresponding to the strain history (14.58) is designated
by R(e; t). Meantime, the "instantaneous tangent modulus" is designated by E,(e) where
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E1(e) = =R(e;O)

de

Similarly, the "instantaneous s~cond-o,dermodulus", ~., is defined by
1

On the other hand, the equilibrium response ofthe material may be expressed as

From which, the "equilibrium tangent modulus" is given as

Thus, the "equilibrium second-o,de, modulus", ~. (e), is identified by
I
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(14.60a)

(14.60b)

(14.61)

(14.62)

(14.63)

Schuler, Nunziato and Walsh (1973) have imposed certain curvature conditions on
the constitutive functional F(e) of(l4.59). They advanced that these conditions would hold
valid for most ofviscoelastic materials. These conditions may be presented as follows:

For all e on (0,1) and all t on (0,00),

v v
E (e»O, E (e»O

1 E

(14.64)
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The inequalities under (i) above imply that the instantaneous and equilibrium stress-strain
curves are strictly convex from below and the instantaneous response curve lies everywhere
above the equilibrium curve as shown in Fig.14.5. It is assumed in the latter figure that 0. (0)
= 0E (0) = O. Meantime, the inequalities under (ii) above affirm that for all strain histories on
(0,1), the stress relaxation function is positive and a monotonically decreasing function of the
elapsed time t. Gurtin and Herrera (1965) have also discussed these inequalities, (ii) above,
within the context of linear viscoelasticity.

(ii) R(e(t-t),t»O, R'(e(t-"t),"t)~O

where R'(e(t-"t),"t) = ..£..R«t-"t),t)
o"t

(14.65)

v
v (00)
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I
I
I
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Figure 14.5. Steady wave solutions (Curvature conditions imposed on the instantaneous
and equilibrium stress-strain curves). "Reprinted with permission from Int. 1. Solids
Structures, Vol.9, Schuler, K.W., Nunziato, l.W. and Walsh, E.K., Recent Results in
Nonlinear Viscoelastic Wave Propagation, pp. 1237-81,1973, Pergamon Press Ltd."
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14.8. Acceleration Waves

The subject ofacceleration wave propagation in nonlinear materials with fading time­
memory has been considered by, amongst others, Truesdell and Toupin (1960), Varley
(1965), Coleman, Gurtin and Harrera (1965), Coleman and Gurtin (1965), Bailey and Chen
(1971) and Schuler, Nunziato and Walsh (1973).

Definition
Cgleman and Gurtin (1965) advanced that if the following two conditions are satisfied, then
X (t), - 00 < t < 00, is an acceleration wave.

A-I: x (X,"t), X(X,"t) and the deformation gradient F are continuous functions of X and
"t jointly for all X and "t, while x(X,"t), aF(X,"t)/aX,F(X,"t) have jump
discontinuities across the wave material trajectory, but are continuous in X and "t
jointly everywhere else.

A-2: the past history ofthe deformation gradient,Fr
l (Xi)' is a smooth function of X and

t with respect to the norm I I . I Ir ' Fr
l (X,' ) is the restriction on the history of

the deformation gradient F(t-"t) to its domain ofdefinition (0, 00).

The condition (A-2) limits the wildness of the past history for the material with
memory.

Coleman and Gurtin (1965) considered, within the general linear theory of simple
materials with fading memory, the case when an acceleration wave which since t=O has been
propagating into a region which had been previously at rest in a fixed homogeneous
configuration R. For this case, it was remarked by these authors that the hypothesis A-2
above follows from hypothesis A-I for al1 X> X (0) and t> O. In other words, whenever
the acceleration front is entering a homogeneous medium at rest, the hypothesis A-I would
generally suffice to ensure that F/(X,') is a smooth function of X and t with respect to the
norm II . II r·

Thus, following the condition A-I abov.e, the compatibility condition (11.53) and
taking f (X, t) = E (X, t), one can write at X = X (t) that

[v] = U[E] = U 2[axE] (14.66)

Following (8.8:5), the stress and the internal energy must also be discontinuous at X =X (t).
Thus, with reference to (8.8:8), the balance of linear momentum asserts that

[0] = PoU[v], [axo] = - Po[v] . (14.67)
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Also, the balance of energy implies that

- U[e + 1.p V 2] = [ov], [e) [oe]
2 0

(e.g., Schuler, Nunziato and Walsh, 1973).

(14.68)

The jump in the particle acceleration is conventionally taken as the amplitude of the
wave front. Denoting the latter at any instant oftime by a(t), then

a(t) = [v](t) (14.69)

Based on purely kinematical considerations, Coleman and Gurtin (1965) affirmed that the
amplitude of an acceleration wave obeys the following relationship

2 da _.!. dU = [X]_U2aF
dt U dE ax

(14.70)

where, as introduced earlier U = U(t) is the intrinsic wave velocity and E, is the
instantaneous tangent modulus. As an alternate expression to (14.70), Coleman and Gurtin
(1965) advanced the following equation for the amplitude of an acceleration wave using
condition A-I and the balance ofmomentum equation (14.67).

2 da = .!. dU + ...!..[ 020 ]_ U2[ of ]
dt U dt Po atax ax (14.71)

Meantime, Coleman, Gurtin and Herrera (1965) indicated that the intrinsic velocity
U of an acceleration wave satisfies the equation

u2 = R(O)/po (14.72)

In this equation, R(O) is the instantaneous tangent modulus corresponding to the history
F(') (X (t), . )i.e.,

do (e)
R(O) = -'-I _de €-o (14.73)

Thus, eqn. (14.72) implies that the intrinsic velocity of an acceleration wave U=Uo is a
constant given by
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(14.14)

(14.15)

Following the above conditions, Schuler, Nunziato and Walsh (1913), following Coleman and
Gurtin (1965), affinned that the amplitude ofan acceleration wave is given by

da = _ pa + J!. a 2

dt Y

where Band y are constants given by

p = -R '(0) = constant, y =
2(EI)0

and

R '(O)Uo
v
(E )0

1

= constant
(14.16)

The solution of(14.75) can be written as

a(t) = y

( .-L - I) exp(pt) + 1
a(O)

For a given material, 13 and yare constants.

(14.11)

(14.18)

(i)

(ii)

Assuming that the hypothesis of the above theorem holds and suppose that

R(O)>0, R '(0)<0, (E1)0 .. 0 (14.19)

One concludes, with reference to (14.78), following Coleman and Gurtin (1965), that:

I. Ifeither

Ia (0) I is less than IY I, or
v

sgn a (0) = sgn (E )0
1

then a (t) - 0 monotonously as t - 00

D. If a (0) = Y, then a (t) =a (0)
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UJ. If both

(i)

(ii)

Ia (0) I is greater than IY I, and
v

sgn a (0) "" - sgn (E )0
I

then Ia (t) I - 0 monotonously and in a finite time t. given by

t = - -! In( 1--.L)
~ P a(O)

(14.80a)

It is apparent, from the above discussion, that Iy I plays the role of the "critical amplitude"
ofthe input acceleration. The latter may be denoted by a. which is expressed with reference
to Eqn. (14.76) as

R '(O)Uo=1--,.---.,.""";;'1 =constant

(~.L
(14.80b)

Thus (14.80) implies that, assuming (14.79):

(i) if the amplitude ofthe input acceleration is sufficiently small « critical amplitude) or
if the amplitude has the same sign as the instantaneous second-order modulus, then
an acceleration wave obeying (11.76) is gradually damped out. In this, the internal
dissipation ofthe material is expected to be the governing factor in the mode ofwave
motion.

(ii) if, however, the amplitude of the input acceleration is greater than the critical
amplitude and has its sign opposite to that of the instantaneous second-order
modulus, then the wave would achieve an infinite amplitude in a finite time, i.e., a
shock wave may be produced. In this, the nonlinearity of the instantaneous stress­
strain curve would be the controlling factor (see Schuler, Nunziato and Walsh, 1973).

As noted by Coleman and Gurtin (1965), the presence of internal damping, manifested
by a strictly negative value of R'(O), does not always imply that a singular surface moving
into a homogeneous region must be damped out.

In the linear theory of simple materials with fading memory, the stress-relaxation
function R(t), with
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R '(t) = d~~t),

is a material function independent of the strain history E (t - t). In the physical application
of this theory, it is generally expected that (Gurtin and Herrera, 1964)

R(O»O, R'(O)~O

Coleman, Gurtin and Herrera (1965) ruled out, however, the possibility when R(O)=O
or R'(O) > 0 in the applicability of relation (11.76) above. Meantime, Coleman and Gurtin
(1965), considered the applicability of(14.76) in the following two cases:

(i) R' (0) = 0 :

In this case, it is advanced that the time-dependency of the amplitude a(t) of the
acceleration wave is expressed as

a(t) = a(O)
1 +~ a(O)t'

v
E

~ = 2UR~O)
(14.81)

where ~ is the instantaneous second-order modulus. Two situations may be considered
I

here:

(i.l) ~ i' 0, then (11.81) implies, since Po > 0, that if a (0) has the same sign as ~ ,
:::L- I

then, Ia (t) I - 0 monotonously in a finite time.

(i.2) VE i' 0 , then (11.78) would reduce to
:::L-

a(t) = a(o)exp( R '(O)t)
2R(0)

(14.82)

which may be generally valid for a large class of linear viscoelastic materials. A special class
of materials with R'(O)=O is the class of perfectly elastic materials for which (14.80) is
known to be applicable (Thomas, 1957, Green, 1964 and Coleman and Gurtin, 1965).
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(ii) R' (0) < 0

In this case, it follows from (14.76) that the amplitude of the acceleration wave a(t)
- 0 as t - 00 regardless of the sign of a(O).

14.9. Shock Waves

The subject of shock wave propagation in nonlinear materials with fading time­
memory has been considered, by Duvall and Alverson (1963), Coleman and Gurtin (1965),
Coleman, Gurtin and Herrera (1965), Chen and Gurtin (1970, 1972a) and Huilgol (1973),
amongst others.

Coleman, Gurtin and Herrera (1965) asserted that the following two conditions must
be satisfied for the wave X(t), .00 < t < 00, to be called a shock wave in a material with
memory.

S-l: the coordinate function x (X, t) to be continuous in both X and t jointly while the

deformation gradient F (X, t) =~ x (X, t)and the time-derivative of the coordinate
. (X ) ax(X t) h .aX d' .. . h 'al .x , t = ' ave Jump Iscontmultles across t e wave mateo trajectoryat

Q (t) but are continuous in X and tjointly everywhere else.

S-2: the past history ofthe material is not too wild. For this purpose, it is assumed that the
past history of the deformation gradient Fr

l (X,' )to be a smooth function ofX and
t with respect to the norm I I ' I Ir' In this, FrI (X, . ) is the restriction on the history
of the deformation gradient F(t - t) to its domain of definition (0, 00).

Thus, following condition S-I ab~ve, the compatibility condition (14.53) together

with f(X, t) = u (X, t) affirm that at X = X,

[v) = - U[e) (14.83)

Where U is the intrinsic velocity of the shock wave. In view of(14.83), either the jump in
the particle velocity [v) or the jump in the strain Ie) may be taken as a measure of the
amplitude of the shock. Meantime, the equations (14.67) and (14.68) concerning,
respectively, the balance ofmomentum and the balance ofenergy are also valid for the case
of shock waves.

Coleman, Gurtin and Herrera (1965) showed that the intrinsic velocity U of a shock
wave satisfies the relation
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(14.84)

where ~ lFl is the instantaneous secant modulus (14.60a) cor-responding to the history just
before the arrival of the shock and a jump of amount lFI where F is the deformation
gradient. Considering now the case ofa compressive wave propagating into a region at rest
and unstrained for aU past times (Chen and Gurtin, 1970 and Schuler, Nunziato and Walsh,
1973), i.e., for X> X(t), e (t - "t) = 0, 0 ~ "t < 00 and

Thus, the corresponding stress jump is expressed in view ofthe definition of the instantaneous
stress 0, as [0 I = 0\ ( e-) .

This implies, in view of(14.83) and (14.84) that the intrinsic velocity can be expressed by

2 0\ (e -) E, (e -)
U =--=--

Po e Po
(14.85)

(14.86)

which, in view of the second inequality of the convexity conditions (14.64), implies that

Po U
2

< 1
E\(e-)

The inequality (14.86) above affirms (Schuler,Nunziato and Walsh, 1973) that the shock
velocity is subsonic with respect to the material behind the wave front. From (14.85), it can
be seen that the shock velocity depends on the strain amplitude e·. Furthermore, one can
write with reference to (14.85) that

where

dU

dt
=

/I

(1-Il)E,(e-) de-

2poUe- dt
(14.87)
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(14.88)

given earlier by (14.86).

In view of(14.84), one concludes that the time rate of change of the shock velocity U is
proportional to that of the amplitude of the strain behind the front eO. Following this and
using the assumed characteristics of the deformation gradient F, Chen and Gurtin (1970)
derived the following "shock amplitude equation"

where

A

d - (l-Jl) {A }
~ = U-- A-(o ef
dt A x

I + 3Jl

(14.89)

A

A=
R /(e- ;0) e­

A

UE,(e-)(I-Jl)
(14.90)

In (11.90), R'(eO ; 0) is the initial slope of the stress-relaxation function corresponding to the
jump strain input (14.58). It is evident, in view of(14.64), (14.65) and (14.90), that A ~ o.

Thus, with reference to the shock amplitude expression (14.89), one may conclude that the
growth or decay behaviour of the shock wave front would depend on the strain gradient
immediately behind the front (Schuler, Nunziato and Walsh, 1973). That is

(i) if

(ii) if

(iii) if

i«oe)- de-<O
x ' dt

A d -
A = (0 e)- ~ = 0

x ' dt

~>(oxef, de- >0
dt

(14.91)

In view of the above, Schuler et al (1973) referred to A as the "critical strain
gradient". These authors expressed, the shock amplitude equation (14.90) in terms of
particle velocity as
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(14.92)

In this equation, ( v)-is the particle acceleration immediately behind the shock front and
U 2 IAI is "the critical acceleration". It is evident from (14.92) that

(i) the wave front grows if (vr > u 2 I A 1
(ii) is steady if (vf = U 2 1,).1
(iii) decays if (vf < U2 1AI (14.93)

Further, it can be shown (Chen and Gurtin, 1970) that equation (14.92) reduces for the case
ofweak shock waves to the following simple expression

dv - A-
- = - ",v
dt

where f3 is a constant given by

R/(0'O)P = - ,
2 (E,)o

in which,

The solution of the differential equation (14.94) is

v -(t) = v -(0) exp( - Pt)

(14.94)

(14.958)

(14.95b)

(14.96)

which asserts that the amplitude ofa weak shock wave decays exponentially to zero as t­
00. Such response is identical to that predicted by the linear theory ofviscoelasticity (see, e.g.,
Lee and Kanter, 1953; Chu, 1962; Coleman and Gurtin, 1965 and Valanis, 1965).



www.manaraa.com

250

14.10. Thermodynamic Influences

14.10.1. ACCELERATION WAVES

It is noted by Schuler et aI. (1973) that thermal effects have no influence on the
propagation of acceleration waves in nonconducting materials with memory. Accordingly,
on the assumption that a particular material to be a thermal nonconductor (which could be
reasonable for a large class ofpolymeric solids), the study of the propagation of acceleration
waves in such material would provide no information about the thermodynamic influence on
its mechanical response. Thus, for a thermal nonconducting material, if the relaxation
function and second-order modulus are taken at a fixed entropy, then the velocity of every
acceleration wave would satisfy (14.72). Furthermore, the amplitude of an acceleration wave
entering a region at rest, unstrained and at uniform temperature would satisfy (14.78) with
the material constants appearing in this equation being given by (14.76) and (14.77).

In case of conducting materials, however, thermodynamic influences on the
propagation of acceleration waves in viscoelastic materials are pronounced. In this, the
reader is referred, for instance, to Coleman and Gurtin (1966).

14.10.2. SHOCK WAVES

Thermodynamic effects on the propagation ofshock waves in nonconducting materials
have been considered by Coleman and Gurtin (1966) and Chen and Gurtin (1972b).
Meantime, studies on shock wave propagation in materials with memory which conduct heat
have been carried out, for instance, by Achenbach, Vogel and Herrmann (1966) and by
Dunwoody (1972).

14.10.3. AN ILLUSTRATIVE EXAMPLE

Determination of the Stress Relaxation Functionfrom Shock Wave Data
Nunziato and Sutherland (1973) considered plate impact experiments to study the one­
dimensional dynamic response ofPMMA. They considered the characteristic time scale for
SUCR experiments to be 10-2 - I Ilsec. Denoting, over this time scale, the relaxation function
b-y R(t) where R(O) is equivalent to the value of the relaxation function at 10-2 Ilsec and
R(oo) is corresponding to the relaxation function at 1 IIsec. Nunziato and Sutherland (1973)
obtained the stress-relaxation function R(t) shown in Fig. 14.6. From Fig. 14.6, one has:

1\

R(O) = 90.1 kbars,

1\

R(oo) = 88.0 kbars
(14.97)
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Figure 14.6. Longitudinal stress reiaxationfunction forPMMA. From: Nunziato, J.W. and
Sutherland, H.I. (1973) Acoustical Determination of Stress Relaxation Functions in
Polymers, J. Appl. Phys., 44(1), 184-87 (American Institute of Physics). Reprinted with
permission

Meantime, the characteristic relaxation time A is evaluated by considering the relation

fI Ro -R~
R ("t)I~=A. = + R~

e
(14.98a)

in which e is the Naperian base. From (14.97) and (14.98a), one concludes from Figure 14.6
that the characteristic relaxation time is

A = 0.22 Ilsec (14.98b)

Schuler (1970) considered the propagation of steady one-dimensional shock waves
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in PMMA. The relaxation behaviour of PMMA was characterized by a nonlinear constitutive
relation of the form

o(x,t) = 0E(€) + fR(€;'t)[I+€(t-'t) - I]d't
1 + e(t)

o
(14.99)

where e = au is the longitudinal strain, 0E(€) is the equilibrium response function and R(e;ax
't) is the generalized stress relaxation function. The latter is assumed to have the form

R(e;'t) = R(e;O) exp( -'t/A)

Evaluating (14.99) for the strain jump

e(t-'t) = €, 't = 0
=0 't>0

then, it fotlows from (14.100) that

(14.100)

(14.101)

From an analysis of steady waves (see, e.g., Greenberg, 1968, Schuler 1970 and Schuler et
aI., 1973), one has

0, (e) = Po U/(e) e
(14.102)

where U, (€) and ~ (E) are least square polynomial functions of the steady shock velocity
as a function of strain e at the shock front and at the tail of the wave (Nunziato and
Sutherland, 1973). For small strains, the nonlinear constitutive relation (14.99) would reduce
to the corresponding constitutive relation in the linear case with (see Nunziato and Walsh,
1973)

II do (0) ~

R('t) = -'- + 2fR(0;'t)d't
d€ o

(14.103)
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Combining, now, (14.100) and (14.103) it follows that

do (0)
_1_ = V 2(0)
dE Po I

consequently,

/I

R(t) = eRa -RJ exp( -t/'A) + R_

where

(14.104)

(14.105)

It is noted that VI(O) and VE(O) are the zero strain intercepts of the VI(E) and Vde)
curves. Vsing data reported by Schuler (1972), see Nunziato and Sutherland (1973), and
Barker and Hollenbach (1970), Nunziato and Sutherland (1973) concluded that

Ra = 90.2 kbars,

(14.106a)
R_ = 88.2 kbars

Schuler (1970), by fitting the observed steady wave profiles, found that

'A = 0.25 J.1sec (14.106b)

which is comparable to the value given earlier by (l4.98b). With the above data, the
relaxation function (14.105) is given in Fig. 14.7 (after Nunziato and Sutherland, 1973). As
demonstrated, there is reasonable agreement with the relaxation function deduced from
acoustic dispersion data.

14.11. Study Problems

1. Define briefly the following terms:
(a) Internal friction.
(b) Static hysteresis.
(c) Viscous loss.

2. Derive the wave equation in a linear viscoelastic material as based on Boltzmann's
superposition principle.

3. Derive the wave equation in a linear viscoelastic material as based on the
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correspondence principle.
4. What is meant by the expression: "a material with a time fading memory".
5. Define an "acceleration wave" as applied to wave propagation in a viscoelastic

material.
6. Define a "shock wave" as applied to wave propagation in a viscoelastic material.
7. Comment on the kinematic conditions that would be required to be satisfied for a

shock wave to form in both linear and nonlinear viscoelastic material.
8. Following Problem 7 above, what are the required kinematic conditions that would

be required for a shock wave to form in a ductile material (Consult Chapter J2).
9. What are the kinematic conditions for an acceleration wave to form in a viscoelastic
10. Following Problem 9 above, what are the required kinematic conditions that would

be required for an acceleration wave to form in a ductile material (Consult Chapter
12).

93 ,.....--,-I--...,'r----~I--...,I--~

T=22.2·C

.-90~

1 --~---..--=--=-.::-:..:-=-:-:.::-:.:::.:-=.::-:..::-::.::-:.::-:.-=
c(!)

87 ....

84 L...-__....L... .L-1 1L...-__....l1__..-J

0.0 0.2 0.4 0.6 0.8
l1me (lJ.s)

Figure 14. 7. Stress-relaxation function for PMMA appropriate for shock wave experiments: - - - ,
Schuler (1970, unpublished data), __, this work. From: Nunziato, I.W. and Sutherland, H.I.
(1973) Acoustical Determination of Stress Relaxation Functions in Polymers, J. Appl. Phys., 44(1),
184-187 (American Institute of Physics). Reprinted with permission.

14.12. Transition to the Viscoelastic Boundary Value Problem

In view ofthe time-dependency of the response behaviour in viscoelasticity which is further
complicated by the form of the constitutive relations and, hence, the associated boundary
conditions, serious attempts to solve viscoelastic boundary value problems have lagged
considerably behind those in classical elasticity. It is only in the last four decades that
viscoelastic boundary value problems have been actively considered. At the beginning,
researchers have given attention to the solution of the simpler viscoelastic problems that have
analogues in classical elasticity whereby the viscoelastic solution may be expressed directly
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in tenns ofthe analogous elastic problem. Research efforts have been advanced since then to
tackle more difficult viscoelastic boundary value problems with or without correspondence
to the theory ofelasticity.

14.12.1. CLASSIFICATION OF VISCOELASTIC BOUNDARY VALUE PROBLEMS

Since the response behaviour ofa viscoelastic material is time-dependent, it thus follows that
no real static viscoelastic problem exists. However, in a large number of cases, it may be
admissible
(see Hunter, 1967) to neglect the acceleration tenns in the equations ofmotion. In such case,
the viscoelastic boundary value problem is referred to as "quasi-static" or "quasi-stationary".
AsHunter (1967), for instance, pointed out, the only "true static" problems in viscoelasticity
are those corresponding to the equilibrium limit ofcomplete stress relaxation. A"quasi­
static" viscoelastic boundary value problem is often classified from the point ofview of the
time-dependency ofits boundary regions. In this, the following two categories are often dealt
with.

(A) Quasi-static problems with fIXed (time-independent) boundary conditions.
For this category, the loading history is assumed to be known for all time over
a fixed part ofthe boundary, while the displacement history is specified for the
remaining part.. This type of problem is generally solvable using a
correspondence with an analogous elastic problem, i.e., by employing the so
called "correspondence principle" (to be introduced in this Section). This is
essentially due to the possibility of obtaining Laplace (or Fourier) transfonns
of the boundary conditions as illustrated later in this Section.

(B) Quasi-static problems with mixed boundary regions which are time­
dependent.
This category of viscoelastic boundary value problems is not generally
susceptible to solution by the correspondence principle as it may be impossible
to obtain appropriate transfonns of the boundary conditions. Examples of
such type of problems may include contact problems where the load on the
indenter is varying or the indenter is moving into the viscoelastic material
specimen with an indentation ofvarying geometry.

Much less research work has been carried out on inertial and dynamic viscoelastic
boundary value problems. In this domain, a large portion of the research has concentrated
primarily on viscoelastic wave propagation problems that involve only one space variable.
Chao and Achenbach (1964) and Gurtin and Herrera (1964), among others, considered the
use of the correspondence principle for the solution of viscoelastic wave propagation
problems of this type. In general, however, viscoelastic waves may propagate in three
dimensions with different magnitudes ofattenuation and dispersion (e.g., Lockett, 1962). In
this case, an associated boundary value problem may not be solvable via a dynamic
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correspondence principle (Hunter, 1967).
Research efforts to solve thermoviscoelastic boundary value problems have been often

distracted by the fact that mechanical properties of viscoelastic materials are sensitive to
temperature variations. This is complicated further by the heat generated in the viscoelastic
material during deformation. The formulation of the governing equations has been proven,
thus, to be difficult. Morland and Lee (1960), for instance, have considered the case of a
thermo-rheologically simple solid (e.g., Schwarzl and Staverman, 1952 and Hunter, 1961) in
the absence of internally generated heat and thermodynamic coupling effects. Morland and
Lee (1960) applied, then, the resulting equations to the quasi-static problem of an
incompressible long cylinder subject to radial temperature gradient and internal pressure.
Muki and Sternberg (1961) have dealt with the thermal stresses in viscoelastic materials with
temperature dependent properties and considered transient stress problems in plane slabs and
spheres subject to temperature variation. Rogers and Lee (1962) have considered the solution
ofthe quasi-static thermoviscoelastic problem of a sphere with an internally ablating cavity.
Sternberg and Gurtin (1963,1964) considered the uniqueness of the theory of
thermorheologically simple ablating viscoelastic solids.

A classification ofboundary value problems in viscoelasticity is presented in Fig. 14.8.
For comprehensive studies ofthe subject matter, the reader is referred further to Read (1950),
Lee et al. (1959), Sternberg (1964), Prede1eanu (1965), Rogers (1965), Lee (1966) and
Golden and Graham (1988); among others.

Viscoelastic boundary value problem

.___-------.A-------....( ~

Quasi-static boundary value problem Dynamic boundary value problem
(the acceleration terms are neglected

In the equations of motion)
I

.___-------.A-------r \
Isothermal Thermovlscoelastlc

(most of the problems and analyses are Coupling effects Coupling effects
concemed with linear Isotropic materials are neglected are InCluded

under Isothermal conditions)
I

.___-------A-------r \
FIxed (time-Independent) boundary Mixed-type (tlme-dependent) boundary

conditions conditions
Correspondence principle may be utilized Problems are not susceptible to solution

to solve quasi-static problems by the correspondence principle

Figure J4.8. Classification of viscoelastic boundary value problems.
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14.12.2. FORMULATION OF TIIE VISCOELASTIC BOUNDARY VALUE PROBLEM

In compliance with the principles of continuum mechanics, the motion of a viscoelastic
(continuum) body is generally governed by the laws of conservation ofmass and momentum,
the stress-strain constitutive relations, the boundary conditions and the initial conditions. As
demonstrated in the remainder of this section, the formulation of this set of governing
conditions is determined by the type of the boundary value problem considered.

Isothermal, Linear VIScoelastic Boundary Value Problem
In this class of boundary value problem, all the geometrical assumptions of infinitesimal
elasticity theory are implied. These would usually include the assumptions of small
deformations and small strains, the boundary conditions applied to undisturbed surfaces and
the neglect ofany convective terms in the acceleration. In this class ofviscoelastic boundary
value problem, only the viscoelastic stress-strain relations would differ from the linear elastic
constitutive equations. All other governing conditions would follow directly from linear
elasticity with proper inclusion of the time-dependency of the pertaining variables.The
governing set ofconditions for an isothermal, linear viscoelastic boundary value problem are
as follows:

(i) Initial conditions
We assume that the body is initially undisturbed. In other words, it is initially stress free and
in mechanical equilibrium. Thus, the initial conditions are,

(14.107)

where U j designate the components of the displacement vector in a rectangular Cartesian
coordinate system.

(ii) Boundary conditions
The boundary B ofthe body is considered to be composed of two parts Bo and Bu. That
is

where Bo denotes the part of the boundary of the body over which the components of the
stress a are prescribed; and Buindicates the remaining part of the boundary over which the
components ofthe displacement u are specified. The boundary conditions may be assigned
in the form ofmagnitudes of:

• traction vector components T j over Bo such that
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(14.1088)

where nj are the components of the outward unit normal to Bo.

- displacement vector components Vj over Bu as

(14.108b)

The boundary conditions (14.108) are assumed to be fixed, that is, both the traction
vector components Tj and the displacement vector components Vj are considered to be
prescribed for all t.

(iii) Balance of linear momentum
One of the following two situations may be considered:

- A quasi-static problem. In this case, the equilibrium equation is

(14.109)

(14.110)

- A dynamic problem. In this case, the equation ofmotion is

a2u
0ifJ + Xi = p-'at 2

where, in (14.109) and (14.110), Xi are the body force components per unit volume.

(iv) Linear strain-displacement relations

1
£.(t) = -(u.(t) + u ..(t»)

IJ 2" J.I (14.111)

in which a comma indicates partial differentiation with respect to the coordinates X; of the
material particle.

(v) Stress-strain relations.
General linear constitutive equations for a viscoelastic material with·an arbitrary degree of
anisotropy may be expressed in the form ofBoltzmann superposition integral (e.g., Haddad,
1995)
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Creep case:

(14.112)

where Cijklt-~ are the components of the creep function.

Relaxation case:

(14.113)

where Rijdt-~ are the components of the relaxation function.

The constitutive relation for an isotropic material can be reduced to two pairs of
operators, one for the stress-strain deviatoric constitutive relation which covers shear
response and one for average hydrostatic tension and dilatation. In this case, a differential
operator law in the following form may be used (Lee, 1960)

Pl(D)O/;p) = Ql(D)<P)

P2(D)Okk(t) = Q2(D)ekk(t)

where O';j, e'ij are the stress and strain deviators defined, respectively, by

(14.114)

e;; = 0

(14.115)

In Equation (14.114), PI' P2, QI and Q2 are polynomials ofthe time-derivative operator
D = alat.

Alternatively, the stress-strain relations (14.114) may be used in either of the following
constitutive forms:

Creep case:

(14.116)
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where Ct(t) and C2(t) are the creep functions in pure shear and pure dilatation,
respectively (e.g., Haddad, 1995).

Relaxation case:

(14.117)

where Rt(t) and R2(t) are the relaxation functions in pure shear and pure dilatation,
respectively.

For an isotropic viscoelastic material, an approximate form of the constitutive relation
in the relaxation case may be expressed (Hunter, 1967) as,

I ae (t) I ae '..(t)
0 ..(/) = a!A(/-t)_kk_dt + 2!~(/-t)-'J-dt

I} I} at at
o 0

(14.118)
where A(t) and ~(t) are appropriate relaxation functions.

In terms ofdeviatoric and dilatational components, the isotropic constitutive equation
in the relaxation case can be further written as,

I oe' (t)
oil) = 2!~(/-t)-/}-·-cit

~ at
o

(14.119)
I oe.(t)

0.(/) = 3!k(/-t)_D-dt
II at

o

where o\j(t) and e'ij (t) are, respectively, the deviatoric stress and the deviatoric strain
components and p(t) and k(t) are the relaxation functions in pure shear and pure dilatation,
respectively.

In the isothermal linear boundary value problem, the three balance of linear
momentum equations (14.109), or (14.110), the six strain-displacement relations (14.111) and
the six stress-strain constitutive equations, e.g. (14.119), constitute a set of fifteen field
equations for the fifteen dependent variables Uj, Eij and oij under the prescribed boundary
conditions Tj(x,t) and Uj(x,t), (14.108), and the assumed initial conditions (14.107).
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14.12.3. UNIQUENESS OF SOLUTION

An important question concerning the solution of a boundary value problem in continuum
mechanics is whether the formulated problem has a solution and whether the solution is
unique or not (Fung, 1965). On physical grounds, this question may be dealt with by
reference to the thermodynamics of the problem involved. On mathematical grounds,
however, this question must be answered by the theory of partial differential equations. A
satisfactory solution to the problem in hand must comply with both the laws of physics and
principles ofmathematics. In solving boundary value problems of static equilibrium within
classical elasticity, for example, one may proceed in the following sequence: (i) one solves
the equations ofequilibrium for the stresses oij . (ii) the constitutive response equations are
then solved for the strains €jj by using the stress components Ojj obtained from (i). Here,
an infinite set ofsolutions may be found. However, the unique solution would be singled out
by employing, for instance, the conditions ofcompatibility (Chapter 3).

The existence and uniqueness of solution theorems in classical elasticity have been
extended by Gurtin and Sternberg (1962) to the class of linear boundary value problems in
viscoelasticity. This was carried out in light of an earlier work by Volterra (1909).

For the most direct case of isothermal, isotropic, linear viscoelastic boundary value
problem under a quasi-static condition, Christensen (1971), following Gurtin and Sternberg
(1962), presented a uniqueness condition ofsolution. This condition may be stated, in view
ofthe set ofgoverning equations presented earlier, as follows:

The isotropic, quasi-static, viscoelastic baundary value problem governed by
the initial conditions (14.107), the boundary conditions (14.108), the
equations ofequilibrium (14.109), the strain-displacement relations (14.111)
and the stress-strain equations (J4.119) possesses a unique solution provided
that the initial values ofthe relaxationfunctions appearing in the constitutive
equations (14.119) satisfy the conditions

J.l(0»0 and k(O»O (14.120)

For a proof of the uniqueness theorem stated above, the reader is referred to
Christensen (1971). Other versions ofuniqueness theorems for the above class ofboundary
value problems are given by Onat and Breuer (1963), Edelstein and Gurtin (1964), Odeh and
Tadjbakhsh (1965), Barberan and Herrera (1966) and Lubliner and Sackman (1967), amongst
others.

14. 12.4.CORRESPONDENCE PRINCIPLE. THE ELASTIC-VISCOELASTIC ANALOGY

For a large number of technical viscoelastic problems, it is possible to relate mathematically
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the solution ofa linear, viscoelastic boundary value problem to an analogous problem of an
elastic body ofthe same geometry and under the same initial and boundary conditions. This
is carried out by transforming the governing equations of the viscoelastic problem to be
mathematically equivalent to those governing a corresponding elastic problem. In this, both
Laplace and Fourier transforms are often used. Accordingly, one would be able to employ
the tools of the theory of elasticity to solve different boundary value problems in linear
viscoelasticity.

The above analogy is referred to as the "correspondence principle". It implies that
elastic analysis procedures may be utilized to derive transformed viscoelastic solutions (see,
for instance, Lee, 1955, Morland and Lee, 1960 and Schapery, 1967). Lee (1955)
demonstrated the correspondence principle for isotropic media at constant temperature.
Meantime, Morland and Lee (1960) considered the application of the correspondence
principle for isotropic materials with temperature variations. Biot (1958) argued that the
correspondence principle may be also applied to anisotropic materials due to the symmetry
of the relaxation modulus tensor, i.e. R;jk,(t) = ~'ij(t).

Isothermal, Linear Viscoelastic Boundary Value Problem
(i) Initial conditions. The body is assumed to be initially undisturbed. Thus, the initial

conditions (14.107) will hold.

(ii) Boundary conditions. The Laplace-transformed forms of the boundary conditions
(14. 108a) and (14. 108b) are, respectively,

(14.121a)

(14.121b)

where s is the Laplace transform variable and the "overbar" designates the Laplace­
transform of the variable, i.e.,

liX,s) = JTj(x,t)e -Sldt
o

and

U,(X,s) = JU/(x,t)e -Sldt
o

(see Appendix C)

(14.122a)

(14.122b)
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(iii) Balance of linear momentum. The quasi-static case is dealt with here. Recalling
(14.109), multiplying it by e-ll and integrating over _oo<t<oo, then, the Laplace
transform of the equilibrium equation is

(14.123)

(iv) Linear strain displacement relations. The Laplace-transformed strain-displacement
relation (14. Ill) is,

(14.124)

(v) Stress-strain relations. The constitutive equations (14.112) and (14.113) can be
transformed by the rule of convolution integrals (see Schapery, 1967) to yield, respectively,
the algebraic relations:

(14.125)

(14.126)

where Cijle' and Rij1r' are the s-multiplied (Laplace) transforms of the creep and relaxation
functions, respectively, i.e.,

(14.127a)

(14.127b)

(14.128)

The quantities~ and ~k' are interrelated operational functions, and both are completely
symmetric. Thus, in view of the thermodynamic theory, the transformed constitutive
equations in terms ofthese operational functions are identical to those of an elastic body with
compliance Fijle' and modulus Rij1rI and of the same degree ofgeometric symmetry (see
Schapery, 1967).
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For the case ofan isotropic material, the constitutive equation (14. liS) may be used.
The Laplace transform of this equation is (see Hunter, 1967).

(14.129)

where 0ij and E'g are the Laplace transforms of 0ij and E'ij, respectively. In this equation,
the transform moduli A(S) and p(s) are defined by,

2
A(S) = k(s) - - ~(s)

3
(14.130)

where k(s) is the Laplace transform of the relaxation function in pure dilatation, i.e., with
reference to Eqn. 14. 117,

k(s) = sfR.(t)e -.Idt

o

and ~(s) is the Laplace transform of the relaxation function in pure shear, i.e.,

~(s) = sfR2(t)e -.Idt

o

(14.1318)

(14.131b)

In the general case of nonhomogeneous material, the field quantities 0ij' Ejj, and E'ij
of(14.129) are usually functions ofboth the transform parameter s and the position vector
x. However, the transform moduli A(S) and p(s) are functions of the transform variable
s only (Hunter, 1967).

The corresponding format to (14.129) in linear elasticity is the constitutive equation,

0ij ;: A£/>ij + 2~£'ij

where A and ~ are the Lame constants.
correspondence principle.

(14.132)

Such analogy reflects the basis of the

The set ofLaplace-transformed relations, (14.121), (14.123), (14.124), together with
the transformed constitutive equations (14.125) and (14.126), or alternatively (14.129),
constitutes an "associated' elastic problem corresponding to the original (quasi-static)
viscoelastic boundary value problem for the same geometry and subject to surface tractions
Tj = Tj(x,s), displacements Ui= ui(x,s) and body forces Xi = Xi(ll,S). The task then would
be to solve this analogous elastic problem (Laplace transformed of the original viscoelastic
problem) to determine the transformed components of the stress 0ij and/or the transformed
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components of the displacement Uj throughout the body.

A Laplace inversion procedure would follow afterwards to determine the components
ofthe stress and displacement in the original viscoelastic boundary value problem. The reader
is referred, in this context, to Sips (1951), Broil (1953), Lee (1955,1960), among others.

Although the presentation above uses Laplace transform procedure, a similar treatment could
be accomplished using Fourier transform (e.g., Read, 1950).

Remarks on the Use of the Correspondence Principle to Solve Linear Viscoelastic
Boundary Value Problems

In the course of solving a linear viscoelastic boundary value problem using the
correspondence principle, one might consider some simplifications in order to ease the
difficulty which might arise in the inversion ofthe resulting Laplace transforms. For instance
(see Hunter, 1967),

- In a large number ofboundary value problems it may be unnecessary to invert the
resulting Laplace transform for all positions on the boundary (i.e., x on B" or BJ if
the stress and/or displacement are only required at one particular position.

- In some situations, the integral value of the stress and/or displacement is required
to be determined rather than individual values of these variables. In such case, it
might be easier if one establishes the relevant integral property before the inversion
process.

- The inversion procedure can be simplified significantly if one assumes a constant
Poisson's ratio model and particularly if the body forces ,t are neglected. In this
case, if B" is considered to be stress-free, then, for the same boundary conditions,
the resulting displacement field at any given instant oftime would be identical to the
displacement field of the corresponding elastic problem. A similar example here is
when Bu=O and Bo=B, i.e., the traction vector is specified everywhere on the total
boundary, then, the resulting viscoelastic stress field would be identical with the stress
field of the corresponding elastic problem.
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EXAMPLE 14. 1: Torsional Quasi-Static Twisting ofa Linear, Viscoelastic Cylinder.

This example (Hunter, 1967) considers the determination of the time-dependent
twisting moment and displacement of a solid cylinder of radius a and length I made of
linear viscoelastic material.

Let uf , Ue and Uz represent the displacement components in cylindrical polar
components. Let 6 denote the angle of twist at z=f and M designate the twisting moment.

From the theory ofelasticity, the displacement field of an elastic solid cylinder under
the action of a twisting moment and a stress free cylindrical surface condition is expressed
(see, e.g., Love, 1944), as,

(14.133)

For an analogous quasi-static viscoelastic problem with prescribed displacements as

u ­o -
re.
{
o.

z=l

z=O

and a stress free cylindrical surface, the displacement field is given by (14.133) with 6 now
is time-dependent variable. In this case, the only non-vanishing strain component is,

1 r
to = -6(/)-
• 2 I

(14.134)

The non-vanishing (transformed) stress corresponding to the above strain becomes

- - - r
'to. = ll(S) 6(s)­

I

where "i!(s) is the transformed shear modulus.

(14.135)

Thus, the total (transformed) couple required to maintain the (transformed) angle of twist
tJ(s) can be expressed as,
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a 4

M = 21tJto r 2dr = 1ta il(s)6(s)
z 21

o

which may be inverted in either of the relaxation form,

4 I

M(/) = ~J6(/)G(1 -I ')til'
21 o

or, in the creep form

6(/) = ( 1t~4rl fM(/)G -1(1 - I )dl'
o

where G(t-t') is the relaxation function of the material in shear.
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(14.136)

(14.1378)

(14.137b)

Equations (14.137) provide a quasi-static linear viscoelastic solution of the presented
problem for prescribed 6(t) or M(t).

EXAMPLE 14.2: Impact ofa Flat Circular Punch on a Linear, Viscoelastic Half­
Space.

Elastic Solution
According to the theory of elasticity (see Hunter, 1967) the solution ofthe problem of the
normal indentation of an elastic half-space by a flat ended rigid-circular punch of radius a
gives a pressure distribution described as (Boussinesq, 1885).

o r>a

(14.138)

where d is the depth of the penetration and v is Poisson's ratio of the elastic half-space.
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Further, the total load is given by,

a

J
81ta

F = 21t prdr =--fJd
I -ro

Viscoelastic Solution
For the linear viscoelastic case, Eqn. (14.139) becomes,

- 81ta - -F = --u(s)d : v = constant
I-v

(14.139)

(14.140)

where v is, as presented above, the Poisson's ratio of the viscoelastic half-space.
Accordingly, given F(t) or d(t), Eqn. (14.140), when inverted, gives d or F respectively.

Extension ofthe Problem above to Include Impact
For the impact problem, the load F is expressed by Newton's second law ofmotion

F=-md

where m is the mass of the indenter and d is its acceleration. On taking Laplace transform
of the above expression, then, the (transformed) force is written as

(14.141)

where v is the initial impact velocity at the initial conditions: d=O at t=O.

Solving (14.140) and (14.141) for d gives

[
8 ]-1d = S2 + 1ta I!(s)
m(1 - v)

(14.142)

With some physical approximation (Hunter, 1967), the inversion of (14.142) gives
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d= : ( 1 + ta:l> ) exp[ - ~(<.> tanl»t ]sin(<.>t -tan l»

v tan 6 - 2<.>t
+ exp--

2<.> 'It

where <.> is the solution of

<.>(1 - v)--,-_-,- <.>2 = ~ (<.»
8'1ta I
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(14.143a)

(14.143b)

In (l4.143b), ~l(<'» is the real part of the complex shear modulus and, in (14.143a), tan 6 =

~2(<'»/1l1(<'»' For the values of <.> where the viscoelasticity is significant, ~2(<'»« 1l1(<'»
and tan l> « 1.

Further, the impact tenninates at a time given by d=O with solution

when the indenter velocity is - v(l - y tan l» where

This results in a "coefficient ofrestitution" , given by

, = I - 1.2 tan l>

Thus, the energy absorbed by the solid is

E = 1.2 mv 2 tan~

(see Hunter, 1967).

(14.144)

(14.145)
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14.12.5. QUASI-STATIC VISCOELASTIC MIXED BOUNDARY VALUE PROBLEMS

Earlier in Subsection 14.12.3, the set of conditions governing an isothermal, linear viscoelastic
boundary value problem has been introduced. In Subsection 14.12.4, the correspondence
principle was presented to solve a boundary value problem of this type, subject to the
condition that Bo and Bu are independent of time where those are the parts of the boundary
upon which stress vector components and displacement components, respectively, are
specified. This is necessitated by the requirement that the assumed boundary conditions at
a point to be time invariant so that the integral transform methods would be applicable.

Consequently, an elastic-viscoelastic correspondence principle does not exist
when the parts ofthe boundary BCI and B. are junctions oftime, i. e., when
the boundary conditions at the particular point in question may involve with
the passage of time both stress and displacement vectors.

A representative boundary value problem of the latter type is the time-dependent
indentation ofa viscoelastic half-space by a curved rigid indenter. In this case, as the indenter
is loaded and the depression into the viscoelastic half-space is progressing, there are some
points on the boundary of the indentation region that, at first, may have traction free boundary
conditions, but later could have displacement followed by stress boundary conditions. In other
words, a portion of the boundary is the boundary Bu part of the time and is the boundary·
Bo at other times, so that the half-space would conform to the geometry of the indenter in
the contact region. Studies concerning this problem were presented, for instance, by Lee and
Radok (1960), Hunter (1960), Graham (1965,1967), Calvit (1967) and Ting (1966.1968).
Other examples ofmixed boundary value problems are, for instance, those involving rolling
of rigid bodies over a viscoelastic half-space (e.g.,Hunter, 1961 and Morland, 1962, 1967)
and ablation problems in which phase change could cause the boundaries of a viscoelastic
medium to change size and shape. An example of this problem is the case of a spinning
rocket's filling burning internally (e.g., Cornelliussen et al., 1961). A similar problem of an
internally ablating sphere was considered by Rogers and Lee (1962). Other examples of
boundary value problem where integral transform methods are invalid are nonisothermal
problems in which the mechanical properties are assumed to be temperature-dependent. A
number ofboundary value problems of the latter types have been solved, but it appears that
no systematic methods of solution are available.

EXAMPLE 14.3: Deformation of a Uniform Viscoelastic Beam by a Curved Rigid
Indenter. (see Christensen, 1971)

The schematics of the problem are shown in Figure 14.9. As indicated,

P(t) is the force applied to the indenter,
d(t) is the vertical displacement of the indenter, and
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a (I) is is half-length ofthe contact region (It is considered a basic unknown of the
problem).

P(t)

H-----l~ x

y I~"--=.-L-..-,.1
Figure J4.9. Deformation of a uniform beam by a curved rigid indenter.

The indenter is assumed to have a cubic profile expressed by

y = d(/) - blxl 3

where b is a given constant.

(14.146)

In this problem, classical beam theory with simply supported end conditions are
assumed. Inertia effects are neglected. Contact is considered to begin at t=O.

Based on the above assumptions, elasticity theory gives

El
d4w

= q(x)
dx 4 (14.147)

where I is the moment of inertia of the cross-section of the beam, w is the transverse
displacement and q(x) is the lateral load.

Meantime, a viscoelastic beam theory gives

If'R(t - t)~[a4W(X,t)r= q(x,t)
at ax 4

o
(14.148)
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in which R(t- r) is the uniaxial relaxation function.

In the contact region, x<a(t), the deflection of the beam must conform to the geometry
of the indenter, then, with reference to Eqn. (14.146),

w(x,t) = d(t) - bx 3
; x <a(t) and t~O (14.149)

Outside the contact region, x>a(t), the lateral load vanishes and Eqn. (14.148) is
satisfied by

(14.150)

where b)(t), b2(t), b)(t) and b.(t) are functions of time required to be determined.

Implying the condition that the shear resultants on the ends of the beam balance the
applied load P(t) gives, in view of (14.1 SO),

I db (.)
121!R(t-.)--!it-dt = P(t)
o

The end conditions are:

which can be specified by (see Figure 14.9)

and

(14.151)

(14.152)

(14.153)

The continuity conditions at the edge of the contact region x=a imply that, w, aw/ax
and a2w/ax2 to be continuous. Accordingly, equations (14.149) and (14.150) give
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and

b1(t) + b2(t)a(t) + b3(t)a2

+ b4(t)a3(t) =d(t) - ba3(t)

2bit) + 6b4(t)a(t) = - 6ba(t)

Relations (14.151) to (14.156) give six nonlinear equations:

273

(14.154)

(14.155)

(14.156)

(i) If the load P(t) is considered to be known, then, the six equations would
be solved for the six unknowns blt). bit), bit), b/t). art) and d(t).

(ii) Alternatively, if the displacement of the indenter d(t) is taken to be
specified, then, the above-mentioned equations can be solved for the
unknowns Clt). Cit). Cit). C/t). art) and P(t). These two cases are
considered separately by Christensen (1971).

------------------------------------
EXAMPLE 14.4: A Spherical Indenter on a VIScoelastic Half-Space

As a second example of a viscoelastic boundary value problem with mixed-typed
boundary conditions, the problem of indentation of a viscoelastic half-space by a rigid
spherical indenter is considered. Previous studies on this type ofproblem were carried out,
for instance, by Lee and Radok (1960), Hunter (1960) and Graham (1965). The analysis
presented below follows that ofHunter (1967) after Graham (1965). Reference is, also, made
to Christensen (1971).

The indenter is considered to be applied at the origin of a rectangular Cartesian
coordinate system (x,y,z) and its motion is vertical in the z-direction. The shear stresses over
the entire boundary of the half-space are assumed to be identically equal to zero. In the
contact region, however, the normal component of the displacement of the boundary is
considered to conform to the shape of the indenter. Let,
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R
a(t)
a(t)
z=O
r =X2+y2

is the radius of the indenter
is the depth of penetration
is the radius of the contact surface
is the surface of the (viscoelastic) half-space

The Problem
It is to determine the stress distribution under the spherical indenter and the relation between
the depth of penetration 0(1) and the radius ofthe contact surface a(l) subject to the
following boundary conditions:

1
Uz = 6(/) - 2R (x 2 +Y2)H(/),

AI z=O,

t =0rz

where H(t) is the Heaviside step function (Appendix B).

rsa(/)

r>a(/)

(a)

(b)

(c)

(14.157)

Elastic Solution
The starting point of Graham's solution is taken as (see Hunter, 1967) the Boussinesq
formula for the normal surface displacement of an elastic solid subjected to a normal point
load P at x' y', i.e.,

1
(1 v)Pr --

U (xJ',O) = - l(X-X)2 + (y_y)2] 2
z 27t1l

where 11 is the elastic shear modulus and v is Poisson's ratio.

(14.158)

Viscoelastic Solution
Generalizing (14.158) to the case of a viscoelastic half-space subjected to a time variable
distributed load P(x,y,t) gives under the assumption ofa constant Poisson's ratio(see Hunter,
1967),

1

uz(xJ',O,t) = (12~V)G -l(/).df fP(x 'J' ',1) [(x -X)2 +(y - y)2f2dx '~'
0..

(14.159)
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where G-1(t) is the creep function in shear and where the following notation ofGurtin and
Sternberg (1962) is used

a*dP = fa(t - t ')dp(t) = fa(t - t )~(t ')dt'

In (14.159) the double (surface) integral is taken over the maximum range Om enclosing all
points x',y' for which P(x',y',t') is non-zero for any time t' in the range _00 < t' < t.

With reference to Eqn.(14.159), Hunter (1967) considered the following four
situations:

(i) For a given load P(x,y,t), Eqn. (14.159) presents the solution for the
normal surface displacement and such problems may be considered within the
class of the boundary value problems that can be solved by the
Correspondence Principle (Subsection 14.12.4).

(ii) For the indentation problem, "mixed-type boundary conditions" boundary
value problem, Eqn. (14.159) may be considered as an integral equation for
P subject to the condition that for r < a(t), the surface displacement Uz is
given by (14. 157a), while for r > a(t), P vanishes.

(iii) For monotonously increasing a(t), ilm is time-dependent and can be
taken as ()(t) = trd(t). In this case, the orders of space and time integration
in (14.159) can be changed to give

I

uz =(12~V) f f ttt'dy'[(x-x)2+(y-y)2f2 G- 1dP
0(/)

in which

G -ldP = TJ(x,y,a)

(14.160)

(14.161)

where TJ is the unique solution of the corresponding elastic problem whose solution
(Boussinesq, 1885) is given by

(14.162a)

and,
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" = 0 for r>a

so that (14.161) leads to

P(x,y,/) = 4 I'G(t -t')~[(a2(t')-r2)~1/'
n(1 -v)R dt'o

(14.162b)

(14.163)

in which for a fixed r, the lower limit of the integral may be taken as tit where tit is the unique
solution

a(t ") = r

Meantime, the total load on the indenter is given by

0(1)

F(/) = 2n I r P(x,y,t)dr
o

which can be evaluated by interchanging the order ofthe space and time integrations (Hunter,
1960, 1967) to give

,
F(t) = 8 IG(t - t ').!!-.a 3(t ')dt'

3R(I-v) dt'o

Further, it can be shown that the depth of penetration can be expressed by

which is the same for the corresponding elastic problem.

(14.164)

(14.165)

(iv) The radius of the contact surface art) increases monotonously to a
maximum value at t=t." and then decreases to zero. In this case, the solution
given above is valid for t $ tm.. For I > 1m• however, the solution fails because
it is no longer permissible to replace Om in (14.159) by (,}(t). To obtain the
solution (14.159) for I> tm, Hunter (1967) introduced the time function t1(t)
defined by the relations:



www.manaraa.com

277

(14.166)

In other words, I J is the time prior to I for which the radius of the contact circle is
equal to the current value.

Further studies concerning the viscoelastic contact problem have been dealt with, for
instance, by Calvit (1967) and Ting (1968). Graham (1968) and Ting (1968) have outlined
restricted classes of viscoelastic contact problems which may be solved directly using the
elastic-viscoelastic correspondence principle.

14.12.6. THE THERMOVISCOELASTIC BOUNDARY VALUE PROBLEM

The set of conditions that governs a thermoviscoelastic boundary value problem may be
stated as follows:

(i) Initial Conditions
Assuming the body is initially undisturbed at a base temperature 80' then, the initial
conditions are

u.(t)=O e,,(t)=O o,,(t)=O 8(t)=O _00 < t < 0
t 'lJ 'IJ ' ,

(14.167)

where 8 denotes the temperature deviation from the base temperature 80,

(ii) Boundary Conditions
In order to account for the temperature effect, the boundary is visualized
(Christensen, 1971) to be composed of two regions, i.e., Be is that region of the
boundary upon which the temperature is prescribed and (B-Be) is the complimentary
region over which the surface is taken to be perfectly insulated against heat flow. The
thermal boundary conditions can then be stated as

8(x,t) = 8(x,t),
(14.168)

x on (B-Bo),t ~ 0

(14.169)

where k;j as a second-order tensor accounts for mechanical properties of the
material.
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Combining the thermal boundary conditions (14.168) and (14.169) with the traction
and displacement boundary conditions stated earlier for the isothermal problem, (14.108),
then, the set of boundary conditions for the thermoviscoelastic problem is written as

Oij(x,t)nj = Tj(x,t)
ulx,t) = Ulx,t)

6(x,t) = 6(x,t)

(iii) Balance oflinear momentum

x on Bo
x on B.

x on Bo

x on (B-8 )

(14.170)

The equations of (quasi-static) equilibrium are

or, alternatively, the equations ofmotion are

(iv) Strain-displacement relations, i. e.,

1
E. (t) = -(u (t) + u. (t»

IJ 2 'I J,I

(v) Stress-strain relations

For anisotropic materials:

The relaxation constitutive relation is expressed as

O.(t) =1'Rlelt -t\.:l Ele/(t)dt -I''·' ..(t -t) a6(t)tit
IJ IJ i\ ]V at 'I'IJ at

o 0

(14.171)

(14.172)

(14.173)

(14.1748)
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Meantime, the creep constitutive relation corresponding to (14. 174a) is written as

t 00 ~T.) t 06(t)
£,(t) = fCuit - T.) k dT. - f«;.(t - T.) --de

Y Y aT. ' aT.
o 0

(14.174b)

In the case of thermorheologically simple materials, one may employ a stress-strain
relation of the form (see Schapery, 1964)

t .:l t
v£kl f 06(T.)o.(t) =fR (~-~"-dr: - "r(~ -~)-de

Y ~ J~ ~y ~
o 0

or, equivalently,

(14.175a)

(14.175b)

where ~, introduced earlier in Section 8.10 (Chapter 8), is the so-called "reduced time"
defined by the relation

Also,

where T. ~ t.

~ =f dtlae(6), ~I =fdtlae(6)
o 0

(14.176)

(14.177)

The relaxation function "'ij(~) appearing in (14.175) is assumed to have the following
exponential series form

'",:.r<~) = L ",<m)ij e -F,ly.. + ",/ij
m

(14.178)

where the constants "'ij(m) and ""ij define the thermal stress characteristics of the material
before loading (Schapery, 1964,1967) and Ym are appropriate exponent factors. Meantime,
the relaxation moduli in (14.175) are considered (Schapery, 1964) to be given by
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R (~) - ~ R(m) e -tIV.. + R1';ilct
ijlet'" - LJ ykl ,

m
(14.179)

On the other hand, when the temperature is constant, the relaxa- tion moduli may be taken
as

R (tla) - ~ R(m) e(-tIV..)ae + R';ikt
ykl fJ -LJ ykt ,

m
(14.180)

which reflects the effect ofconstant temperature on relaxation (or creep) behaviour, that is,
to simply shift the time scale. Accordingly, Be is often referred to as "time shift factor").

The creep constitutive equation corresponding to (14.175b) is

(14.181)

where the function aij(~) accounts for the strain response in the absence of the stress. It is
expressed (Schapery, 1964), by

ay.(~) = L aij (I -e -(Iv..) + ay
m

(14.182)

where ar) and aij define the thermal strain characteristics of the material before loading.

For an isotropic material, the relaxation constitutive relations corresponding to

(14.174a) are

(14.183)

where 0', and e'ij denote, respectively, the deviatoric components of the stress and strain.
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The creep constitutive equations corresponding to (14.183) are expressed as

I GOl(t)
r.'.(t)=fc (t-.)_'_~-eft

y 1 G.
o

(14.184)
I GO (t) I G6 t

e (t)=fC(t-.) kJc -3f CX(t-.)-l.left
kJc 2 G. G't

o 0

In the case of thermorheologically simple materials, constitutive equations for
isotropic materials are expressed (Schapery, 1964) for the relaxation case by

where,

(14.185)

In (14.185), R(~, A(~) and "'(~ are relaxation functions which, for thermodynamic reasons
(Schapery, 1964), are considered to have the forms

R(~) = E R(m) e -~Y.. + R
e

m

A(~) =E A(m) e -~Y.. + Ae
m

m

with constants having the properties

(14.186)
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Ym > 0

R(m) <! 0, R
e
<! 0, E R(m) + R

e
> 0

m

2K = A + -R <! 0
e e 3 e

where K. and K(m) define the bulk relaxation modulus

K(~) = A(~) + ~R(~) =~ K(m) e -f,/y.. + K
3 ~ 6

(vi) The heat conduction equation

For isotropic materials:

For anisotropic materials:

kat a8(t) a t at (t)
-8=-!m(t-t)--dt +-!t\1(t-t)_IcIc_dt
8
0

,II at at at at
o 0

(14.187)

(14.188)

(14.189)

(14.190)

where kv or k, m(t), and t\1ij(t) or t\1(t) are mechanical properties of the material.

In the general anisotropic case, the Laplace transfonned governing equations for the
thermoviscoelastic boundary value problem are given by:
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6=6

I.... 6.n. = 0
"ij ,I l

,0nBe

,on (B-Be)

(14.191)

(ii) Balance oflinear momentum

The equations of quasi-static equilibrium (14.171)

or, alternatively, the equation ofmotion (14.172)

where s is the Laplace transform variable

(iii) Strain-displacement relations (14. J24)

(iv) The relaxation constitutive relation (14.174a)

(14.192)

(14.193)

(14.194)

(14.195)
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(v) The heat conduction equation (14.189)

(14.196)

The viscoelastic boundary value problem governed by the set of equations (14. 191)
to (14.196) can be solved in the same manner as in the case of coupled thermoelastic
problems. Consequently, the complete solution of the viscoelastic boundary value problem
under consideration is obtained by inverting the transformed solution. The procedure here
is the same as in the case of treating isothermal linear viscoelastic boundary value problems
discussed earlier in this section.

In problems where the coupling term involving €ij in (14.189) and (14. 190) can be
neglected, mechanical response problems and thermal response problems may be separated.
Thus, after obtaining the temperature distribution, either by solving the heat conduction
equation or from experimental results, the mechanical response problem would then be
governed by (14.167) and (14.170) to (14.174). Integral transform methods could thus
provide a useful tool in solving such problems.

14.13. Study Problems

11. Define and comment briefly on the implications of using the "Correspondence
Principle" in the solution ofboundary value problems in linear viscoelasticity.

12. What is meant by a nonlinear viscoelastic material? Illustrate such response in both
creep and relaxation.

13. Extend your arguments, as pertaining to Problem 11 above, to the case of a nonlinear
viscoelastic boundary value problem.

14. Based on the elastic solution given earlier in Chapter 6, determine the stress
distribution in rotating discs if the material is considered to be isotropic, linear
viscoelastic.

15. Assuming a linear thermal gradient, determine the pertaining form of the heat
conduction equation in both isotropic and anisotropic linear viscoelastic materials.

16. Re-attempt the analysis ofProblem 14 above with the inclusion ofan assumed linear
thermal gradient.

14. 14. References

Achenbach, J.D. and Chao, c.c. (1962) A three-parameter viscoelastic model particularly suited for
dynamic problems, 1. Mech. Phys. Solids 10, 245-52.

Achenbach, J.D., Vogel, S.M. and Herrmann, G. (1966) On stress waves in viscoelastic media conducting
heat, in: Irreversible Aspects ofContinuum Mechanics and Transfer ofPhysical Characteristics in
Moving Fluidr, Eds. H. Parkus and L.I. Sedov, Springer, Berlin, pp. 1·15.

Ahrens, T.J. and Duvall, G.E. (1966) Stress relaxation behind shock waves in rocks, J. Geophys. Res. 71,



www.manaraa.com

285

4349-60.
Alfrey, T., Jr. (1948) Mechanical Behaviour ofHigh Polymers, Interscience, New York.
Bailey, P. and Chen, P.J. (1971) On the local and global behaviour of acceleration Waves, Arch. Ration.

Mech. Analysis 41,121. Addendum: Asymptotic Behaviour, ibid 44,212 (1972).
Barberan, 1. and Herrara, I. (1%6) Uniqueness theorems and speed ofpropagation of signals in viscoelastic

materials, Arch. Rat. Mech. Anal. 13, 173-90.
Barker, L.M. (1%8) The fine structure ofcompressive and release wave shapes in aluminium measured by

the velocity interferometer technique, in: Behaviour of Dense Media Under High Dynamic
Pressures, Gordon and Breach, pp. 483-505.

Barker, L.M and Hollenbach, RE. (1964) System for measuring the dynamic properties of materials, Rev.
Sci. Inst. 35(6), 742-6.

Barker, L.M and Hollenbach, RE. (1965) Interferometer technique for measuring the dynamic mechanical
properties ofmaterials, Rev. Sci. Inst. 36, 1617-20.

Barker, L.M and Hollenbach, RE. (1970) Shock wave studies ofPMMA, Fused silica and sappire, J. Appl.
Phys. 41,4208·26.

Bland, D.R (I%0) The Theory ofLinear Viscoelasticity, Pergamon, New York.
Biot, M.A. (1958) Linear thermodynamics and the mechanics of solids, Proceedings 3-d U.S. Natl. Congr.

Appl. Mech., ASME, pp.I-18.
Boussinesq, M.J. (1885) In Todhunter and Pearson - A History ofTheory ofElasticity and ofthe

Strength ofMaterials, Vol. II, Part 2, Dover reprint (1960), pp. 185-357.
Bradfield, G. (1951) Internal friction of solids, Nature 167,1021-3.
Brull, M.A. (1953) A structural theory incorporating the effect of time-dependent elasticity, in

Proceedings I" Midwestem Con! On Solid Mechanics, pp. 141-7.
Calvit, H.H. (1967) Numerical solution of the problem of impact of a rigid sphere onto a linear viscoelastic

half-space and comparison with experiment, Int. J. Solid Structures 3,951-66.
Chao, C. and Achenbach, 1.D. (1964) A Simple viscoelastic analogy for stress waves, in: Stress Waves in

AnelasticSolicls,lUTAM Symposium, Eds. H. Kolsky and W. Prager, Brown University, Providence,
RI, Apr. 3-5, 1963, Springer, Berlin, pp. 222-38.

Chen, P.J. and Gurtin, M.E. (1970). On the growth of one-dimensional shock waves in materials with
memory, Arch. Ration. Mech. Analysis 36, 33-46.

Chen, P.J. and Gurtin, M.E. (1972a) On the use of experimental results concerning steady shock waves to
predict the acceleration wave response of nonlinear viscoelastic materials, J. Appl. Mech. 39, 295-6.

Chen, P.J. and Gurtin, M.E. (1972b) Thermodynamic influences on the growth of one-dimensional shock
waves in materials with memory, Z. Angew, Math. Phys. 23, 69-79.

Chen, PJ., Gurtin, ME. and Walsh, E.K. (1970) Shock amplitude variation in Polymethyl Methacrylate for
fixed values of the strain gradient, J. Appl. Phys. 41, 3557-8.

Christensen, R.M. (1971) Theory ofViscoelasticity, Academic Press, New York.
Chu, B.T. (1%2) Stress Waves in Isotropic Viscoelastic Materials, Division of Engineering, Brown

University, Providence, March 1962.
Coleman, B.D. (1964) Thermodynamics, strain impulses and viscoelasticity, Arch. Ration. Mech. Analysis

17,230-254.
Coleman, B.D., Greenberg, J.M. and Gurtin, M.E. (1966) Waves in materials with memory. V. On the

amplitude ofacceleration waves and mild discontinuities, Arch. Ration. Mech. Analysis 22, 333-54.
Coleman, B.D. and Gurtin, M.E. (1965a) Waves in materials with memory. II. On the growth and decay of

one-dimensional acceleration waves, Arch. Ration. Mech. Analysis 19, 239-65.
Coleman, B.D. and Gurtin, M.E. (1%5b) Waves in materials with memory. III. Thermodynamic influences

on the growth and decay of acceleration waves, Arch. Ration. Mech. Analysis 19, 266-98
Coleman, B.D. and Gurtin, M.E. (1965c) Waves in materials with memory. IV. Thermodynamics and the

velocity of general acceleration waves, Arch. Ration. Mech. Analysis 19(5), 317-38
Coleman, B.D. and GurtiD, M.E. (1966) Thermodynamics and one-dimensional shock waves in materials



www.manaraa.com

286

with memory, hoc. R. Soc. A 292,562-74.
Coleman, B.D., Gurtin, M.E. and Herrara, RI. (1965) Waves in materials with memory. I. The velocity of

one-dimensional shock and acceleration waves, Arch. Ration. Mech. Analysis 19, 1-19.
Cornelliussen, A.H. et aI (1961) Brown University Report NORD 18594/5.
Cunningham, 1.R. and Ivey, D.G. (1956) Dynamic properties of various rubbers at high frequencies,

J. Appl. Phys. 27, 967-74.
Dally, 1.W. and Riley, W.F. (1965) Experimental Stress Analysis, McGraw-Hill, New York.
Dove, RC. and Adams, P.H. (1964) Experimental Stress Analysis and Motion Measurement, Charles Merril

Books, Columbus, Ohio.
Dunwoody, J. (1972) One-dimensional shock waves in heat conducting materials with memory. I.

Thermodynamics, Arch. Ration. Mech. Analysis 47, 117-48.
Duvall, G.E. and Alverson, RC. (l963) Fundomental Research, Tech. Summary Report 4, Stanford Research

Inst., Menlo Park.
Edelstein, W.S. and Gurtin, M.E. (1964) Uniqueness theorems in the linear dynamic theory ofanisotropic

viscoelastic solids, Arch. Ration. Mech. Anal. 17,47-60.
Ferry, J.D. and Williams, M.L. (1952) II. Approximation methods for detennining the relaxation time

spectrum ofa viscoelastic material, J. Colloid Sci. 7,347-53.
Fung, Y.C. (1965) Foundations o/SolidMechanics, Prentice-Hall, Englewood Cliffs, New Jersey.
Glauz, RD. and Lee, E.H. (1954) Transient wave analysis in a linear time-dependent material, J.

Appl. Phys. 25, 947-53
Golden, 1.M. and Graham, G.A.C. (1988) Boundary Value Problems in Linear Viscoelasticity, Springer­

Verlag, Berlin.
Gorsky, W.S. (1936) On the transitions in the CuAu alloy. III. On the influence of strain on the equilibrium

in the ordered lattice ofCuAl, Phys. Zeit Sowjet 6,17-81.
Graham, G.A.C. (1965) The contact problem in the linear theory ofviscoelasticity, Int. J. Eng. Sci. 3, 27-46.
Graham, G.A.C. (1967) The contact problem in the linear theory ofviscoelasticity when the time-dependent

contact area has any number ofmaxima and minima, Int. J. Eng. Sci. 5,495-514.
Graham, G.A.C. (1968) The correspondence principle of linear viscoelasticity for mixed boundary value

problems involving time-dependent boundary regions, Quart. Appl. Math. 26, 167-74.
Graff, K.F. (1975) Wave Motion in Elastic Solids, Dover Publications, New York.
Green, W.A. (1964) The growth ofplane discontinuities propagating into a homogeneously deformed elastic

material, Arch. Ration. Mech. Anal. 16, 79·89.
Greenberg, J.M. (1967) The existence of steady shock waves in nonlinear materials with memory, Arch.

Ration. Mech. Analysis 24, 1-21.
Greenberg, J.M. (1968) Existence ofsteady waves for a class of nonlinear dissipative materials, Quart. Appl.

Math. 26, 27·34.
Gurtin, M.E. and Herrara, I. (1964) A correspondence principle for viscoelastic wave propagation, Quart.

Appl. Math. 22, 360-4.
Gurtin, M.E. and Herrera, I. (1965) On dissipation inequalities and linear viscoelasticity, Quart. Appl. Math.

23,235-45.
Gurtin, M.E. and Sternberg, E. (1962) On the linear theory of viscoelasticity, Arch. Ration. Mech. Anal. 11

(4),291·356.
Haddad, Y. M. (1995) Viscoelasticity 0/Engineering Materials, K1uwer, Dordrecht.
Hetenyi, M., Ed. (1950) Handbook o/Experimental Stress Analysis, John Wiley and Sons, New York.
Hill, R (1962) Acceleration waves in solids, J. Mech. Phys. Solids 10, 1-16.
Hillier, K.W. (1949) A method of measuring some dynamic elastic constants and its application to the study

of high polymers, Proc. Phys. Soc. LXO, O-B, 701·1J.
Hillier, K.W. (1960) AReview of the progress in the measurement of dynamic elastic properties, Int. Symp.

on Stress Wave Propagation In Materials, Ed. N. Davids, Inter-science Publishers, London, pp. 183­
98.



www.manaraa.com

287

Hillier, K.W. and Kolsky, H. (1949) An investigation of the dynamic elastic properties of some high
polymers, Proc. Phys. Soc. 861,111-21.

Huilgol, RR (1973) Growth of plane shock waves in materials with memory, Int. J. Engg. Sci. 11,75-86.
Hunter, S.C. (l960a) Viscoelastic waves, in: Progress in Solid Mechanics, VoU, Eds. IN. Sneddon and

RHiIl, North- Holland Pub. Co., Amsterdam, pp. I-57.
Hunter, S.C. (196Ob) 1beHenz problem for a rigid spherical indenter and a viscoelastic half-space, J. Mech.

Phys. Solids 8,219-34.
Hunter, S.C. (1961) The rolling contact ofa rigid cylinder with a viscoelastic half-space, J. Appl. Mech. 18,

611-17.
Hunter, S.C. (1967) The solution of boundary value problems in linear viscoelasticity, Proc. 4th 1965

Symposium on Naval Structural Mechanics, Eds. A.C. Eringen, H. Liebowitz, S.L. Koh and I.M.
Crowley, Pergamon, Oxford, pp. 257-95.

Ivey, D.G., Mrowea, B.A. and Guth, E. (1949) Propagation of ultrasonic bulk waves in high polymers, J.
Appl. Phys. 10, 486-92.

Keast, D.N. (1967)Measurements in Mechanical Dynamics, McGraw-Hili, New York.
Kolsky, H. (1954a) Attenuation of short mechanical pulses by high polymers, Proc. 2"'1 Int. Congr. on

Rheology, Butterworths, London, pp. 79-84.
Kolsky, H. (1954b) 1be propagation oflongitudinal elastic waves along cylindrical bars, Phil. Mag. 45,712­

26.
Kolsky, H. (1956) 1be propagation ofstress pulses in viscoelastic solids, Philosophical Magazine 8(1),693­

710.
Kolsky, H. (1958) The propagation of stress waves in viscoelastic solids, Appl. Mech. Rev. 11,465-8.
Kolsky, H. (1960) Viscoelastic waves, Int. Symp. on Stress Wave Propagation in Materials, Ed. N. Davids,

Interscience Publishers, London, pp. 59-90.
Kolsky, H. (1963) Stress Waves in Solids, Dover Publications, New York.
Lee, E.H. (1955) Stress analysis in viscoelastic bodies, Quart. Appl. Math. 13, 183-90.
Lee, E.H. (1960) Viscoelastic stress analysis, in: First Symposium on Naval Structural Mechanics, Eds. 1.N.

Goodier and N.J. Hoff, Pergamon Press, New York, pp. 456-82.
Lee, EH, (1966) Some recent developments in linear viscoelastic stress analysis, in: Proceedings, Eleventh

Int. Congo ofApplied Mechanics, Ed. H. Gortler, Springer-Verlag, Berlin, pp. 396-402.
Lee, E.H. and Kanter, 1 (1953) Wave propagation in finite rods of viscoelastic materials, J. Appl. Phys.

14(9), 1115-22.
Lee, E.H. and Morrison, I.A. (1956) A comparison of the propagation of longitudinal waves in rods of

viscoelastic materials, J. Polymer Sci. XIX, 93-110.
Lee, E.H. and Radok, I.R.M. (1960) 1be contact problem for viscoelastic bodies, J. Appl. Mech., Trans. ASME

17,438-44.
Lee, E.H., Radok, 1.RM. andWoodward, W.B. (1959) Stress analysis for linear viscoelastic materials, Trans.

Soc. Rheol. 3,41-59.
Lockett, F.1. (1962) The reflection and refraction ofwaves at an interface between viscoelastic materials, J.

Mech. Phys. Solids 10, 53-64.
love, A.E.H. (1944)A Treatise on the Mathematical Theory ofElasticity, Cambridge University Press.
lubliner,1. and Sackman, 1.l. (1967) On uniqueness in general linear viscoelasticity, Q. Appl. Math. 25,

129-38.
Magrab, E.B. and Blomquist, D.S. (1971) The Measurement of Time-Varying Phenomena, Wiley­

Interscience, New York.
Malvern, L.E. (1951) Plastic wave propagation in a bar ofmaterial exhibiting a strain rate effect, Quart. Appl.

Math. 8,405-11.
Mason, W.P. andMcSkirnin, H.1. (1947) Attenuation and scattering of high frequency sound waves in metals

and glasses,J. Acoust. Soc. Amer. 19,464-73.
Morland, L.W. (1962) A plane problem of rolling contact in linear viscoelasticity theory, J. Appl. Mech. 29,



www.manaraa.com

288

345-58.
Morland, L.W. (1967) Exact solution for rolling contact between viscoelastic cylinders, Quart. J. Appl. Math.

20,73-106.
Morland L.W. and Lee, E.H. (1960) Stress analysis for linear viscoelastic materials with temperature

variation, Trans. Soc. Rheol. 4,233-63.
Morrison, J.A. (1956) Wave propagation in rods of Voigt material and viscoelastic materials with

three-parameter models, Quart. Appl. Math. 14, 153-69.
Muki, R and Sternberg, E. (1961) On transient thermal stresses in viscoelastic materials with temperature

dependent properties, J. Appl. Mech. 28, 193-207.
Nashif, AD., Jones, D.I.G. and Henderson, J.P. (1965) Vibration Damping, John Wiley & Sons, New York.
Nunziato, 1.W. and Sutherland, H.I. (1973) Acoustical determination of stress relaxation functions in

Polymers, J. Appl. Phys. 44(1), 184-7.
Nunziato, J.W. and Walsh, E.K. (1973) Propagation of steady shock waves in nonlinear thermoviscoelastic

solids, J. Mech. Phys. Solids 21, 317-35.
Odell, F. and Tadjbakhsh, I. (1965) Uniqueness in the linear theory of viscoelasticity, Arch. Ration. Mech.

Anal. 18, 244-50.
Onal, E.T. and Breuer, S. (1963) On uniqueness in linear viscoelasticity, in: Progress in Applied Mechanics,

The Prager Anniversary Volume, McMillan, New York, pp. 349-53.
Orowan, E. (1934) ZUr kristall plastizillll.lII. Uber den mechanismus des gleitvorganges, Zeits f Phys.

89,634-59.
Polanyi, M. (1934) Uber cine art gitterstOrung, die einen kristall plastisch machen kOnnte, Zei/sf Phys. 89,

660-4.
Predeleanu, M. (1965) Stress analysis in bodies with time-dependent properties, Bull. Math. Soc. Sci. Math.,

R.S. de Roumanie 9, 115-27.
Rayleigh, J.W.S. (1894) Theory ofSound, Dover reprint, Dover Publications Inc., New York.
Read, W.T. (1950) Stress analysis for compressible viscoelastic materials, J. Appl. Phys. 21, 671-4.
Rogers, T.G. (1965) Viscoelastic stress analysis, in: Proceedings, Princeton University Conference on Solid

Mechanics, Princeton, New Jersey, pp. 49-74.
Rogers, T.G. and Lee, E.H. (1962) Brown Univ. Report NORD 18594/6.
Schapery, RA. (1964) Application of thermodynamics to thermomechanical, fracture, and birefringant

phenomena in viscoelastic media, J. Appl. Phys. 35(5),1451-65.
Schapery, RA. (1967) Stress analysis ofviscoelastic composite materials, J. Composite Mater/als 1,228-66.
Schapery, RA (1974) Viscoelastic behaviour and analysis ofcomposite materials, Ed. G. Sendeckj,

Vol. 2, Academic Press, New York, pp. 86-168.
Schuler, K.W. (1970) Propagation of steady shock waves in Polymethyl Methacrylate, J. Mech. Phys. Solids

18,277-93.
Schuler, K.W., Nunziato, 1.W. and Walsh, E.K. (1973) Recent results in nonlinear viscoelastic wave

propagation, Int. J. Solid Structures 91, 1237-81.
Schuler, K.W. and Walsh, E.K. (1971) Critical-induced acceleration for shock propagation in Polymethyl

Methacrylate, J. Appl. Mech. 38,641-45.
Schwarzl, F. and Staverman. A.I. (1952) Time-temperature dependence of linear viscoelastic behaviour, J.

Appl. Phys. 23(8), 838-43.
Sips, R. (1951) General theory of deformation of viscoelastic substances. J. Polymer Sci. 9, 191-205.
Snock, J.E. (1941) Effect ofsmall quantities ofcarbon and nitrogen on the elastic and plastic properties of

Iron, Physico 8,711-33.
Sternberg, E. (1964) On the analysis of thermal stresses in viscoelastic solids, in: High Temperature

Structures and Materials. Proc. of the 3"" Symp. on Naval Structural Mechanics, Eds. AM.
Freudenthal, B.A. Boles and H. Liebowitz, Pergamon, Oxford, pp. 348-82.

Sternberg, E. and Gurtin, M.E. (1963) Uniqueness in the theory of thermorheologically simple
ablating viscoelastic solids, in: Progress in Applied Mechanics, The Prager Anniversary



www.manaraa.com

289

Volume, Ed. D.C. Drucker, MacMillan, New York, pp. 373-84.
Sternberg, E. and Gurtin, M.E. (1964) Further study of thermal stresses in viscoelastic materials

with temperature dependent properties, in: Proceedings,lUTAM Symposium on Second
Order Efficts in Elasticity, Plasticity and Fluid Mechanics, Haifa, pp. 51-76.

Thomas, T.Y. (1957) The growth and decay of sonic discontinuities in ideal gases, J. Math. Mech.
6,455-69.

Thomas, T.Y. (1961) Plastic Flow and Fracture in Solids, Academic Press, New York.
Ting, T.C.T. (1966) The contact stresses between a rigid indenter and a viscoelastic half-space, J. Appl.

Mech. 33, 845-54.
Ting, T.C.T. (1968) Contact problems in the linear theory ofviscoelasticity, J. Appl. Mech. 35, 248-54.
Tobolsky, A., Powell, R.E. and Eyring, H. (1943) The Chemistry ofLarge Molecules, Interscience, New

York.
TruesdeU. C. and Toupin, R.A. (1960) The classical field theories, Handbuk der Physik ID/l, Ed. S.FIOgge,

Springer, Berlin.
Valanis, K.C. (1965) Propagation and attenuation of waves in linear viscoelastic solids, J. ofMathematics

& Physics 44(3),227-39.
Varley, E. (1965) Acceleration fronts in viscoelastic materials, Arch. Ration. Mech. Analysis 19, 215-25.
Varley, E. and Cumberbatch, E. (1965) Nonlinear theory ofwave-front propagation, J. Ins. Math. and Appl.

1, June 1965, I, 101-112.
Volterra, V. (1909) Sulle equazioni integro-differenziali Della teoria dell' elasticita, R. Accademia dei

Lincei, 18(1), 167. Also, Ibid 18(2), 295.
Volterra, V. (1931) Theory ofFunctional, Dover Reprint, Dover Publications, New York.
Worely, W.J. (Ed.) (1962) Experimental Techniques in Shock and Vibration, ASME, New York.

14.15. Further Reading

Abbott, B.W. and Cornish, R.H. (1965) A stresswave technique for determining the tensile strength ofbrittle
materials, Exp. Mech. 22, 148-53.

Aboudi. J. (1979) The dynamic indentation and impact of a viscoelastic half-space by an axisymmetric rigid
body, Compu. Math. Appl. Mech. Eng. 20, 135-50.

Achenbach, J.D. and Reddy, D.P. (1967) Note on wave propagation in linearly viscoelastic media,
Z. Angew. Math. Phys. 18,141-4.

Alblas, J.B. and Kuipers, M. (1970) The contact problem of a rigid cylinder rolling on a thin
viscoelastic layer, Int. J. Eng. &i. 8, 363-80.

Alfrey, T. (1944) Nonhomogeneous stresses in viscoelastic media, Quart. Appl. Math. 2, 113· 19.
Arenz, R.J. (1964) Uniaxial wave propagation in realistic viscoelastic materials, J. Appl. Mech., Trans. ASME

86(E), Mar. 1964,17·21.
Arenz, R.I. (1965) Two-dimensional wave propagation in realistic viscoelastic materials, J. Appl. Mech.,

Trans. ASME 32(2), June 1965, 303·14.
Asay, JR, Lamberson, D.L. and Guenther, A.H. (1969) Pressure and temperature dependence of velocities

in Polymethyl Methacrylate, J. Appl. Phys. 40, 1768-83.
Atkinson, C. and Coleman, CJ. (1977) On some steady-state moving boundary problems in the linear theory

ofviscoelasticity, J. lnst. Maths. Appl. 20, 85·106.
Baker, W.E. and Dove, R.C. (1962) Measurements of internal strains in a bar subjected to longitudinal

impact, Exp. Mech. 19,307-11.
Bailon, J.W. and Smith, J.C. (1949) Dynamic measurements ofpolymer physical properties, J. Appl. Phys.

20, 493-502.
Barton, C.S., Volterra, E.G. and Citron, SJ. (1958) On elastic impacts of spheres on long rods, Proc. 3'" U.S.

Nat. Congo Appl. Mech., pp. 89·94.



www.manaraa.com

290

Battiato, G., Ronca, G. and Varga, C. (1977) Moving loads on a viscoelastic double layer: Prediction of
recoverable and pennanent defonnations, in: Proceedings. Fourth International Coni on Structural
Design ofAsphalt Pavements, TheUniversity ofMichigan, Ann Arbor, Michigan, USA, pp. 459-60.

Becker, E.C.H. and Carl, H. (1962) Transient-loading technique for mechanical impedance measurement,
in EXperimental Techniques In Shock and Vibration. Ed. W.1. Worley, ASME, New York, pp.I-IO.

Berry, D.S. (1958) A note on stress pulses in viscoelastic rods, Phil. Mag. 8, 100-2.
Berry, D.S. and Hunter, S.C. (1956) The propagation of dynamic stresses in viscoelastic rods, J. Mech. Phys.

Solids 4, 72-95.
Calvit, H.H. (1967) Experiments on rebound of steel spheres from blocks of polymers, J. Mech. Phys. Solids

15, 141-50.
Chou, P.C. (1968) Introduction to wave propagation in composite materials, in Composite Materials

Workshop, Eds. S.W. Tsai, J.C. Halpin and N.J. Pagano, Technomic, Stamford, Conn., pp. 193-216.
Chref, C. (1889) The equations of an isotropic elastic solid in polar and cylindrical coordinates, their

solutions and applications, Trans. Camb. Phil. Soc. Math. Phys. Sci. 6, 115-17.
Chu, B.T. (1962) Stress waves in isotropic linear viscoelastic materials (part one), J. Mecanlque 1(1), 439-62.
Chu, B.T. (1965) Response of various material media to high velocity loadings. I. Linear elastic and

viscoelastic materials, J. Mech. Phys. Solids 13, 165-87.
Comninou, M. (1976) Contact between viscoelastic bodies, J. Appl. Mech. 43,630-2.
Dally, J.W. (1968) A dynamic photoelastic study ofa doubly loaded half-plane, Develop. Mech. 4,649-64.
Dally, J.W., Ourelli, A.1. and Riley, W.F. (1960) Photoelastic study of stress wave propagation in large plates,

Proc. Soc. Exp. Stress Analysis 17,33-50.
Dally, J.W. and Lewis, D. (1968) Aphotoelastic analysis of propagation ofRayleigh waves past a step change

in elevation, Bull. Seism. Soc. Am. 58, 539-63.
Dally, J.W. and Riley, W.F. (1967) Initial studies in three-dimensional dynamic photoelasticity, J. Appl.

Mech. 34,405-10.
Dally, J.W. and Thau, S.A.(1967) Observations of stress wave propagation in a half-plane with boundary

Loading, Int. J. Solids Struct. 3,293-7.
Davies, RM. (1948) A critical study ofthe Hopkinson pressure bar, Phil. Trans. R. Soc. A240, 375-457.
Dohrenwend, C.O., Drucker, D.C. and Moore, P. (1944) Transverse impact transients, Exp. Stress Analysis

I, 1-10.
Dunwoody, 1. (1966) Longitudinal wave propagation in a rate dependent material, Int. J. ofEngineering Sci.

4,277-87.
Dziecielak, R (1985) The effect oftemperature on the propagation of discontinuity waves in a porous medium

with a viscoelastic skeleton, Studio Geotechnlca et Mechanica, Vol. VII (2), 17-34.
Edelstein, W.S. (1969) The cylinder problem in thermoviscoelasticity, Res. Natl. Bur. Standards 738,31-40.
Engelbrecht, J. (1979) One-dimensional deformation waves in nonlinear viscoelastic materials,

Wave Motion 1,65-74.
Evans, J.F., Hadley, C.F., Eisler, J.D. and Silverman, D. (1954) A three-dimensional seismic wave model

\vith both electrical and visual observation of waves, Geophysics 19, 120-36.
Ferry, J.D. (1961) Viscoelastic Properties ofPolymers, Wiley, New York.
Fisher, H.C. (1954) Stress pulse in bar with neck or swell, Appl. Scient. Res. A4, 317·28.
Fisher, G.M.C. and Gurtin, M.E. (1965) Wave propagation in the linear theory ofviscoelasticity, Q. Appl.

Math. 23, 257-63.
Fichera, G. (1972) Boundary value problems of elasticity with unilateral constraints, in: Encyclopedia of

Physics, Vol.VI a12: Mechanics ofSolids II, Ed. C. Truesdell, Springer-Verlag, Berlin, pp. 391-423
Frederick, J.R (1965) Ultrasonic Engineering, John Wiley and Sons, New York.
Frydrychowich, W. and Singh, M.C. (1986) Similarity representation of wave propagation in a nonlinear

viscoelastic rod on a group theoretic basis, Appl. Math. Modeling. 10 (8), 284-93.
Gakhof, F.D. (1966) Boundary Value Problems, Pergamon, Oxford.
Gaul, L. (1992) Substructure behaviour of resilient support mounts for single and double stage



www.manaraa.com

291

mounting systems, Computers & Structures, Vol. 44, No. 1/2, pp. 273-78.
Gaul, L., Klein, P. and Kemple, S. (1991) Damping description involving fractional operators,

Mechanical Systems and Signal Processing 5(2),81-82.
Gaul, L., Schanz, M. and Fiedler, C. (1992) Viscoelastic formulations ofBEM in time and frequency

domain, Engineering Analysis with Boundary Elements 10, 137-41.
G1adwwell, G.M.L. (1980) Contact Problems in the Classical Theory ofElasticity, Sijthoff and

Noordhoff, Alphen aan den Riju.
Golden, lM. and Graham, G.A.C. (1988) Boundary Value Problems in Linear Viscoelasticity, Springer­

Verlag, Berlin.
Goldsmith, W., Polivka, M. and Yang, T. (1966) Dynamic behaviour ofconcrete, Exp. Mech. 23,65-79.
Goodier, J.N., Jahsman, W.E. and Ripperger, E.A. (1959) An experimental surface-wave method for

recording force-time curves in elastic impacts, J. Appl. Mech. 26, 3-7.
Gopalsamy, K. and Aggarwala, B.D. (1972) Propagation of disturbances from randomly moving sources,

Z4MM52,31-35.
Graffi, D. (1952) Sulla teoria dei materiali elastico-viscosi, AUi Accod. Ligure Sci. Lett. 9, 1-10.
Gram, D. (1982) Mathematical models and waves in linear viscoelasticity, in Wave Propagation in

Viscoelastic Media, V52, Ed. F. Mainardi, Pitman, Boston, 1-27.
Graham, GAC. (1965) On the use of stress functions for solving problems in linear viscoelasticity theory

that involve moving boundaries, Proc. R. Soc. (Edin.) A67, 1-8.
Graham, GAC. (1969) The solution of mixed boundary value problems that involve time-dependent

boundary regions, for viscoelastic materials with one relaxation function, Acta Mech. 8, 188-204.
Graham, G.A.C. and Golden, J.M. (1988) The generalized partial correspondence principle in

linear viscoelasticity, Q. Appl. Math. 56(3), 527-38.
Graham, G.A.C. and Sabin, G.C.W. (1973) The correspondence principle of linear viscoelasticity for

problems that involve time-dependent regions,Int. J. Engg. Sci. 11, 123-40.
Graham, G.A.C. and Sabin, G.C.w. (1978) The opening and closing ora growing crack in a linear

viscoelastic body that is subject to alternating tensile and compressive loads, Int. J. Fracture
14,639-49.

Graham, G.A.C. and Sabin, G.C.W. (1981) Steady-state solutions for a cracked standard linear
viscoelastic body, Mech. Res. Commun. 8, 361-68.

Graham, GAC. and Williams, F.M. (1972) Boundary value problems for time-dependent regions
in aging viscoelasticity, Utilitas Mathemalica 2,291-03.

Green, WA (1960) Dispersion relations for elastic waves in bars, in Progress in Solid Mechanics, VoU, Eds.
l.N. Sneddon and R. Hill, Chapter 5, North Holland Publishing Co., Amsterdam.

Gurtin, M.E. and Herrara, I. (1964) A Correspondance principle for viscoelastic wave propagation, Quart.
Appl. Math. 22, 360-4.

Harris, C.M. and Crede, E. (1961) Shock and Vibration Handbook, Vols. I, II and III, McGraw-Hill, New
York.

Harvey, RB. (1975) On the deformation ofa viscoelastic cylinder rolling without slipping, Q.J. Mech. Appl.
Math. 28, 1-24.

Hatfield, P. (1950) Propagation of low frequency ultrasonic waves in rubbers and rubber-like
polymers, Brit. J. Appl. Phys. I, 252-56.

Hrusa, W.J. and Renardy, M. (1985) On wave propagation in linear viscoelasticity, Quart. ofAppl. Math.
XLIII (2), July 1985,237-53.

Hsieh, D.Y. and Kolsky, H. (1958) An experimental study of pulse propagation in elastic cylinders, Proc.
Phys. Soc. 71,608-12.

Hudson, G.E. (1943) Dispersion ofelastic waves in solid circular cylinders, Phys. Rev. 63,46·51.
Hunter, S.c. (1961) Tentative equations for the propagation of stress, strain and temperature fields in

viscoelastic solids, J. Mech. Phys. Solids 9, 39-51.
Hunter, S.C. (1967) The transient temperature distribution in a semi-infinite viscoelastic rod subject to

longitudinal oscillations, Int. J. Eng. Sci. 5, 119-43.
Hunter, S.C. (1968) The motion of a rigid sphere embedded in an adhering elastic or viscoelastic

medium, in: Proceedings, Edinburgh Mathematical Society 16 (Series II), Part I, pp. 55-69.
Jeffrey, A. (1978) Nonlinear wave propagation, Z4MM 58, T38-T56.



www.manaraa.com

292

Jeffrey, A. and Taniuti, T. (1964) Nonlinear Wave Propagation, Academic Press, New York.
Kalker, J.J. (197S) Aspects of contact mechanics, in: The Mechanics of the Contact Between

Deformable Media, Ed. A.D. de Pater and J.J. Kalker, Delft University Press, pp. 1-2S.
Kalker, J.J. (1977) A survey of the mechanics of contact between solid bodies, J. Appl. Math. Phys.

(lAMP) 57, 13·17.
Knauss. W.G. (1968) Uniaxial wave propagation in a viscoelastic material using measured material

properties, J. Appl. Mech., ASME, Sept. 1968, 449·S3.
Koeller, RC. (1984) Application offractional calculus to the theory ofviscoelasticity, J. Appl. Mech. 51, 299­

307.
Kolsky, H (1960) Experimental wave-propagation in solids, in Structural Mechanics, Eds. J. N. Goodier and

N. Hoff, Pergamon Press, Oxford, pp. 233-62.
Kolsky, H (196S) Experimental studies in stress wave propagation, in Proc. V h U.s. Nam. Congr. Appl.

Mech., pp. 21-36.
Kolsky, H. and Prager, W., Eds. (1964) Stress waves in anelastic solids, IUTAM Symposium, Brown

University, Providence, R.I., ApriI3-S, 1963, Springer-Verlag, Berlin, pp. 1-341.
Lamb, H (1904) On the propagation oftrernors over the surface of an elastic solid, Phil. Trans. R. Soc. AlOJ,

1-42.
Lamb, H. (1917) On waves in an elastic plate, Proc. Roy. Soc. A9J, 114-28.
Langhaar, HL. (1962) Energy Methods in Applied Mechanics, John Wiley and Sons, New York.
Lee, E.H (1966) Some recent developments in linear viscoelastic stress analysis, in Proceedings ofthe J I'h

Congress ofApplied Mechanics, Ed. H. Gortler, Springer-Verlag, Berlin, pp. 396-402.
Lifshitz, 1.M. and Kolsky, H. (1964) Some experiments on anelastic rebound, J. Mech. Phys. Solids

12,3S-43.
Lifshitz, J.M. and Kolsky, H. (I96S) The propagation ofspherical divergent stress pulses in linear viscoelastic

solids, J. Mech. Phys. Solids 13, 361·76.
Lindholm, U.S. (1964) Some experiments with the split Hopkinson pressure bar, 1. Mech. Phys. Solids 12,

317-3S.
Lindsay, R.B. (1960)Mechanical Radiation, McGraw-Hili, New York.
Lockett, F.1. (1961) Interpretation ofmathematical solutions in viscoelasticity theory illustrated by a dynamic

spherical cavity problem, J. Mech. Phys. Solids 9, 21S-29.
Lockett, F.1. (1962) The reflection and refraction of waves at an interface between viscoelastic materials.

J. Mech. Phys. Solids 10, S3-64.
Lockett, FJ. and Morland, L.W. (1967) Thermal stresses in a viscoelastic thin-walled tube with temperature­

dependent properties, Int. J. Engg. Sci. 5,879-98.
Love, A.E.H. (1944)A Treatise on the Mathematical Theory ofElastiCily, Dover Publications, New York.
MahaJanabis, RK. andMandaI, B. (1986) Propagation of thermomagneto-viscoelastic waves in a half-space

of Voigt-type material, Indian Journal ofTechnology 24, Sept. 1986, 36S-567.
Mainardi, F. and Nervosi, R (1980) Transient-waves in finite viscoelastic rods, Lett. Nuovo Cim 29,443-7.
Mainardi, F. and Turchetti, G. (1975) Wave front expansions for transient viscoelastic waves, Mech. Res.

Comm. 2, 107·12.
Mainardi, F. and Turchetti, G. (1979) Positive constraints and approximation methods in linear

viscoelasticity, Lett. Nuovo Cim. 26, 38-40.
Margeston, J. (1971) Rolling contact of a smooth viscoelastic strip between rotating rigid cylinders, Int. J.

Mech. Sci. 13,207-15.
Margeston, 1. (1972) Rolling conlact ofa rigid cylinder over a smooth elastic or viscoelastic layer, Acta Mech.

13, 1-9.
McCartney, L.N. (1978) Crack propagation in linear viscoelastic solids: Some new results, Int. J. Fract. 14,

547·54.
Medick, M.A. (1961) On classical plate theory and wave propagation, J. Appl. Mech. 28, 223-8.
Meyer, M.L. (1964) On spherical near fields and far fields in elastic and viscoelastic solids, J. Mech. Phys.

Solids 12,77-lll.
Miklowjiz, 1. (1964) Pulse propagation in a viscoelastic solid with geometric dispersion, in Stress Waves in

Anelastic Solids, Springer.Verlag, Berlin, pp. 2SS·76.
Morland. L.W. (1963) Dynamic stress analysis for a viscoelastic half-plane subject to moving surface traction.



www.manaraa.com

293

Proc. London Math. Soc. 13,471-92.
Morland, L.W. (1968) Rolling contael between dissimilar viscoelastic cylinders, Q. Appl. Math. 25, 363-76.
Morse, P. and Feshbach, H. (1953)Methods o/Theoretical Physics, Vols. I and II, McGraw-Hili, New York.
Nachman A. and Walton, J.R (1978) The sliding ofa rigid indenter over a power law viscoelastic layer, J.

Appl. Mech. 45,111-13.
Norris, J.M. (1967) Propagation of a stress pulse in a viscoelastic rod, Experimental Mechanics

7(7),297-301.
Nunziato, J.W. and Walsh, EK (1973) Amplitude behavior of shock waves in a therrnoviscoelastic solid, Int.

J. Solids Structures 9, pp. 1373-83.
Oliver, 1. (1957) Elastic wave dispersion in a cylindrical rod by a wide-band short duration pulse technique,

J. Acoustic Soc. Am. 29, 189-94.
Pao, Y.H. (1955) Extension of the Hertz theory ofimpact to the viscoelastic case, J. Appl. Phys. 116,100-3.
Petrof, R.C. and Gratch, S. (1964) Wave propagation in a viscoelastic material with temperature­

dependent properties and therrnomechanical coupling, J. 0/Applied Mechanics, ASME,
Sept. 1964,423-9.

Pindera, J.T. (1986) New research perspectives opened by isodyne and strain gradient photoelasticity, in
Proceedings 0/ the International Symposium on Photoelasticity, Tokyo, pp. 193-202.

Reinhardt, H.W. and Dally, J.W. (1970) Some characteristics of Rayleigh wave interaction with SUlface
flaws, Mater. Eva/. 28, 213-20.

Renardy, M. (1982) Some remarks on the propagation and non-propagation of discontinuities in linearly
viscoelastic liquids, Rheologica Acta 21,251-4.

Ricker, N.H. (1977) Transient Waves in Viscoelastic Media, Elsevier, Amsterdam.
Riley, W.F. and Dally, J.W. (1966) A photoelastic analysis of stress wave propagation in a layered model,

Geophysics 31,881-89.
Ripperger, E.A. (1953) The propagation of pulses in cylindrical bars. An experimental study, Proc. I"

Midwest Con! Solid Mech., 29-39.
Rogers, T.G. (1965) Viscoelastic stress analysis, in: Proceedings 0/ the Princeton Univ. Con! on Solid

Mechanics, Princeton, N.J., USA. pp. 49-74.
Rogers, C.A.. Barker, D.K. and Jaeger, L.A. (1988) Introduction to smart materials and structures, in

Proceedings, Smart Materials, Structures and Mathematical Issues Workshop, Virginia Polytech.
Inst. & State University, Blacksburg, VA. Sept. 15-16, 1992, pp. 17-28.

Rubin, J.R. (1954) Propagation of longitudinal deformation waves in a prestressed rod of material exhibiting
a strain-rate effect, J. Appl. Phys. 15, 528-36.

Sabin, G.C.W. (1975) Some Dynamic Mixed Boundary Value Problems in Linear Viscoelasticity, Ph.D.
Thesis, Univ. ofWindsor, Windsor, Ont., Canada.

Sabin, G.C.W. (1987) The impact ofa rigid axisymmetric indenter on a viscoelastic half-space, Int. J. Eng.
Sci. 25, 235-51.

Sackman, J.L. and Kaya, I. (1968) On the propagation of transient pulses in linearly viscoelastic media, J.
Mech. Phys. Solids 16, 349-56.

Schapery, R.A. (1955) A method of viscoelastic stress analysis using elastic solutions, J. Franklin
Institute 279(4), 268-89.

Schapery, RA. (1962) Approximate method oftransforrn inversion for viscoelastic stress analysis,
Proc. 4,h U.S. National Congo Appl. Mech., ASME, New York, pp. 1075-85.

Schapery, RA. (1974) Viscoelastic behaviour and analysis ofcomposite materials, Mechanics o/Composite
Materials, Vol.2, Ed. G.P. Sendeckj, Academic Press, New York, pp. 85-168.
Schapery, RA. (1978) A method for predicting crack growth in nonhomogeneous viscoelastic media,
Int. J. Fract. 14, 293-309.

Schapery, RA. (1979) On the analysis of crack initiation and growth in nonhomogenous viscoelastic media,
in: Fracture Mechanics, Proceedings o/the Symposium in Applied Mathematics o/the A.US. and
S.l.A.U, Vol. XII, Ed. R. Burridge, American Math. Soc., Providence, pp. 137-52.

Sips. R. (1951) Propagation phenomena in elastic viscous media, J. Polymer Sci. 6,285-93.
Skalak, R. (1957) Longitudinal impact ofa semi-infinite circular elastic bar. J. Appl. Mech. 34, 59-64.
Sokolnikoff, I.S. (1956) Mathematical Theory 0/Elasticity, 2nd ed.• McGraw Hill, New York.
Stackgold, I. (1967) Boundary Value Problems o/Mathematical Physics, Vol. I. McMillan. New York.



www.manaraa.com

294

Stoneley. R. (1924) Elastic waves at the surface of separation of two Solids. Proc. R. Soc. AI06. 416-28.
Sultanov. K.S. (1984) Longitudinal wave propagation in a viscoelastic semi-space including an absorbing

layer. J. Appl. Mech. Tech. Phys. 25(5), Sept.-<>Ct. 1984.790-.5.
Sutherland. H.J. and Lingle. R. (1972) An acoustic characterization ofPolymethyl Methacrylate and three

epoxy formulations. J. Appl. Phys. 43(10). 4022-6.
Tanagi. T. (1990) A Concept ofintelligent material. u.s..Japan Workshop on Smart/Intelligent Materials and

Systems. Eds. C.A. Rogers. C. Andrew and A. Masuo. March 19-23, 1990, Honolulu. Hawaii, pp.
3-10.

Tanary, S. and Haddad, Y.M. (1988) Characterization 0/ AdheSively Bonded Joints Using Acousto­
Ultrasonics, Final Report prepared under contract serial number 31946-6-0012/0 I·ST, Department
ofMechanical Engineering, University ofOttawa, Ottawa, Canada.

Tatel, H.E. (19.54) Note on the nature ora seismogram II., J. Geophys. Res. 59, 289·94.
Thau, SA and DallY,J.W. (1969). Subsurface characteristics of the Rayleigh wave, Int. J. Eng. Sci. 7,37·

.52.
Timoshenko, S.P. (1921) On the correction for shear of the differential equation for transverse vibrations of

prismatic bars, Phil. Mag. 6 (41), 744-6.
Timoshenko, S.P. (1928) Vibration Problems in Engineering, Van Nostrand, New Jersey.
Ting, T.C.T. (1969) A mixed boundary value problem in viscoelasticity with time-dependent boundary

regions, in: Proceedings o/the I I'" Midwestern Mechanics Conf. Eds. H.1. Weiss. D.F. Young, W.F.
Riley and T.R. Rogge, Iowa Univ. Press, pp. .591·8.

Ting, E.C. (1970) Stress analysis for a nonlinear viscoelastic cylinder with ablating inner surface. Trans.
ASME, J. Appl. Mech. 37E, 44·7.

Tsai, Y.M. and Kolsky, H. (1968) Surface wave propagation for linear viscoelastic solids, J. Mech. Phys.
Solids 16,99-109.

Tschoegl, N.W. (1989) The Phenomenological Theory ofLinear Viscoelastic Behaviour, Springer, Berlin.
Viktorov, I.A. (1967) Rayleigh and Lamb Waves: Physical Theory and Applications. Plenum Press, New

York.
Walsh, E.K. (1971) The decay of stress waves in one-dimensional polymer rods. Trans. Soc. Rheology 15:2,

34.5-.53.
Watson, G.N. (1960). A Treatise on the Theory 0/Bessel Functions. Cambridge University Press. New York.
Whitham. G.B. (1974) Linear and Nonlinear Waves, 1. Wiley & Sons, New York.
Willis, 1.R. (1967) Crack propagation in viscoelastic media, J. Mech. Phys. Solids IS, 229-40.
Zemanek, J. (Jr.) and Rudnick. I. (1961) Attenuation and dispersion of elastic waves in a cylindrical bar.

J. Acoust. Soc. Am. 33, 1283-8.
Zener, C. (1948) Elasticity and Aneiasticity o/Metals. Univ. Press. Chicago.
Zukas, lA. (1982) Stress Waves in Solids, in Impact Dynamics. Eds. lA. Zukas et al .• John Wiley & Sons,

New York. Chapter I, pp. 1-27.



www.manaraa.com

CHAPTER 15

TRANSITION TO THE DYNAMIC BEBAVIOUR OF
STRUCTURED AND HETEROGENEOUS MATERIALS

15.1. Introduction

The current technology of the design and manufacturing of laminated and fibre-reinforced
composites is faced with problems essentially related to the inherent nature of the mechanical
response of the different constituents of the microstructure, the formation of interfaces
between such constituents and the evolution of the associated deformation processes under
loading. Optimal design of such material systems is becoming a very progressive and
challenging domain in both applied mechanics and material science.

Thus, the increasing use of such materials is inciting new developments to be made
within the context ofmacro- and micro-mechanical constitutive modelling, applications of
such materials under variable boundary conditions, experimental testing methods,
computational methods of analysis and optimization. A new dimension ofoptimal design is
being realized by building new composite systems through direct tailoring of the
microstructure, e. g., by judicious reinforcement and mixing (hybridization) of the constituents
of the microstructure within a specific topological frame of reference and to satisfy the
boundary conditions involved.

In this context, theoretical and experimental studies of the dynamic stress-strain
relations ofhybrid composites have become significantly important. The increased interest in
the subject matter has been motivated recently by the increasing number of engineering
applications and, as well, by the contributions provided by such studies to a better
understanding ofthe mechanisms ofdeformation of such material systems when subjected to
a dynamic loading environment. This chapter reviews some research efforts pertaining to the
microdynamics ofpolymeric composite systems. For other classes of composite systems, the
reader is referred to the bibliography cited at the end of the chapter.

15.2. Influences ofMaterial Properties on Dynamic Behaviour

The dynamic mechanical behaviour of fibre-reinforced composite materials is governed
primarily by their stifthess and damping properties. One of the goals of composite
micromechanics has been to predict these macromechanical properties by using information
on constituent microstructural properties and the interaction between constituent elements
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ofthe microstructure; e. g., Hashin and Rosen (1965), Hashin (1970 a&b) and Jones (1975).
Several authors report values for elastic moduli as deduced from vibration tests ofbeams and
rods; for instance, Schultz and Tsai (1968 &1969), Adams and Bacon (1973 a&b) and Paxson
(1975). Gibson and Plunkett (1976) presented a critical review of the literature on dynamic
properties of fibre-reinforced composites. Polymeric composite systems exhibit in general
viscoelastic behaviour (see Chapter 8). The viscoelastic nature of glass fibre/unsaturated
polyester, for instance, has been studied, e. g., by Suzuki and Miyano (1976) and that of
carbon fibre/epoxy composites was investigated by Miyano et af. (1986), among others.
Meantime, some aspects of the dynamic behaviour of different classes of polymeric
composites have been investigated by, e.g., Cavaille et al. (1987), Chua (1987), Kodama
(1976), Reed (1979) and Kimoto (1990).

Kimoto (1990) investigated the influence ofthe reinforcement surface treatment on
the viscoelastic response characteristics of glass fibre (GF)/epoxy composites. In this, time
and temperature dependence of flexural fracture properties and dynamical properties of
different composites, within the mentioned class, were investigated. The epoxy resin used was
a mixture ofdiglycidyl ether ofhisphenol-A and a class ofaminopropyl curing agent. These
were used in a stoichiometric ratio of 2: 1. Type E of GF woven cloths were used as
reinforcement. The cloths were treated with two kinds of silane coupling reagents, namely,
y-glycidoxypropyltrimethoxysilane (ES) and vinyltris (fJ-methoxyethoxy)-silane (VS). Glass
fibre woven cloths with only heat cleaning treatment (He) were also employed in the
measurement of dynamic mechanical properties. GF composite plates were prepared by a
hand-lay-up method using two sheets ofGF woven cloths for the purpose of the dynamic test.
The volume ratio ofGF content was about 25 vol%. Epoxy resin and composite plates were
cured at room temperature for 24h, and then at 80GC for 3h. GF composite plates containing
surface treated GF are denoted, according to the above terms, by ES-P, VS-P and HC-P.
Flexural load was applied by a three-point bending method. A span of 50 mm was maintained
in all measurements, and the loading bar has a fixed diameter of 10 mm. Strain rates were
calculated from the cross-head speed. The flexural stress (u) and the flexural strain (e) were
calculated from the maximum load and the corresponding displacement, respectively.
Dynamic properties were measured using a viscoelastic spectrometer at a frequency of 10 Hz.

Figures 15.1 and 15.2, due to Kimoto (1990), show, respectively, values of flexural
stress (u) and flexural strain (e) obtained for ES-P as a function of strain rate yat various
constant temperatures. Similar results were obtained for the epoxy matrix and the VS-P
composite. As shown in Figure 15.2, the flexural strain E varies with temperature and y in
a complex manner.

When the curves in Figure 15.1 were joined smoothly to the curve at 60GC, by
applying horizontal shift on a logarithmic scale of y, a master curve of the flexural stressu
for ES-P was produced as shown in Figure 15.3. In a similar manner, master curves of u for
epoxy and VS-P were produced. As shown in Figure 15.3, the flexural stress u decreases
monotonously with decreasing y (or increasing temperature), and the shapes of the master
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curves, for the ES-P and VS-P composites, are similar to each other. Master curves for the
flexural strain E were also obtained by Kimoto (1990) and are shown in Figure 15.4. The
latter curves have a minimum (for epoxy resin) or a maximum value for (GF composites).
With reference to Figure 15.2, the flexural strain E , as mentioned earlier, varies with
temperature and y in a complex fashion which, in turn, is affecting the pertaining master
curves ofFigure 15.4.
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Figure 15.1. Flexural strength for ES-P (glass fibre-epoxy composite; reinforcement is
surface treated with y- glycidoxpropyltrimethoxy silane (ES» as a function ofstrain rate
at various constant temperatures. "Reprinted from Journal ofMaterials Science 15 (1990)
3327-32, Kimoto, M., Flexural properties and dynamic mechanical properties of glass fibre­
epoxy composites, with kind Permission from Chapman and Hall Ltd....
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Figure 15.2. Flexural strain for ES-P (glass fibre-epoxy composite; reinforcement is
surface treated with y- glycidoxpropyltrimethoxy silane (ES»as a function of strain rate
at various constant temperatures. "Reprinted from Journal ofMaterials Science 1S (1990)
3327-32, Kimoto, M., Flexural properties and dynamic mechanical properties of glass fibre­
epoxy composites. with kind Permission from Chapman and Hall Ltd.".

Figure 15.5 shows the temperature dependence of the storage moduli (E') obtained for the
matrix epoxy, ES-P, and VS-P. This figure shows also the temperature dependence ofE' for
HC-P as a reference. As seen from this figure, E' values were larger for GF composites by
comparison with those pertaining to the epoxy resin over the considered temperature range,
and the difference in the values of the referred-to moduli is more remarkable in the rubbery



www.manaraa.com

299

region than in the glassy region. Such an increase in E' for composites in the rubbery region
has been, also, observed by Souma (1982) and Lewis and Nielsen (1970). The magnitude of
E' for GF composites was greater for ES-P than for VS-P over the entire temperature range.

5

3

-5 0

log(rOr)(log min-1)

Figure 15.3. Master curves of flexural strength 0 (D) Matrix epoxy, (0) ES-P, (A) YS-P
(glass fibre-qx>xy composite; reinforcement is surface treated with ~ methoxyethoxy silane
(YS». "Reprinted from Journal o/Materials Science 25 (1990) 3327-32, Kimoto. M.•
Flexural properties and dynamic mechanical properties of glass fibre-epoxy composites.
with kind Permission from Chapman and Hall Ltd.".

b
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Figure 15.6 shows the temperature dependence of the loss modulus E", for matrix
epoxy, ES-P, VS-P and HC-P. As shown in this figure, temperature dependence of E" for
epoxy has a peak maximum at - 75°C. The temperature dependence of E" of GF composites
also shows a shoulder at -75°C, and in addition, other peaks appear on the higher temperature
side (see Kodama (1976) and Reed (1979).
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Agbossou et 01. (1993) studied a series ofpolystyrene/glass bead- composi!es by using
cJY.namic spectrometry. The composite specimens were based on polystyrene (Mn= 99500,
Mw = 306 800) reinforced by 6%-50% volume fraction of glass beads. Two different size
distributions ofparticles were used: The first is within the range of 1-45 Jim and the second
is within the range of 70-110 Jim. The glass beads were dried at IOOoe, but no particular
treatment was performed on them. The composite was extruded at 200oe. The extruded
samples, ofvarying volume fraction, were moulded at 2000e under high pressure (200 bar)
and cooled at room temperature. In order to give the same thermal history to each sample,
specimens were heated at temperatures higher than their glass temperature and then cooled
to room temperature at the same cooling rate. The moulded samples were finally cut to the
following dimensions: 20 mm x 4 mm x 5 mm. For dynamic analysis, frequency scans were
performed, using a Viscoanalyser, by increasing the temperature from 300e to 2000e at
several frequencies over the range of5-100 Hz. Several measurements were repeated for both
frequency and temperature scans in order to verify that no physical ageing occurred in the
material during the experiment.

I ...

5

• I
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log(-t aT) !log min-I)

Figure /5.4. Master curves of flexural strain E (0) Matrix epoxy, (0) ES-P, (A) VS-P.
"Reprinted from Journal o/Materials Science 15 (1990) 3327·32, Kimoto, M., Flexural
properties and dynamic mechanical properties of glass fibre-epoxy composites, with kind
Pennission from Chapman and Hall Ltd.".
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Figure 15.5. Temperature dependence of the storage modulus E': (0) Matrix epoxy, (0)
ES-P, (.:1) VS-P, ('V) HC-P (glass fibre-epoxy matrix; reinforcement is with only heat
cleaning treatment). "Reprinted from Journal a/Materials Science 2S (1990) 3327-32,
Kimoto, M., Flexural propenies and dynamic mechanical properties of glass fibre-epoxy
composites, with kind Pennission from Chapman and HaI1 Ltd....

Plots oflog E' and the loss tangent tan () of a polystyrene matrix at five frequencies,
i.e. 5, 10.5,22.3,47.2 and 100 Hz, versus temperature are shown in Figure 15.7. The angle
() is ofparticular interest as it represents the phase angle by which the strain lags behind the
stress in a viscoelastic material (e.g., Haddad, 1995). Accordingly, the loss tangent tan & is
simply the ratio between the loss modulus En and the storage modulus E'. As demonstrated
in Figure 15.7, the tan &maxima and log E' plots, as related to the temperature, show a
frequency dependence.

Figure 15.8 shows log E', log En and tan & spectra recorded at 5 Hz for composites
reinforced by 6%, 15%,21%,35% and 50010 volume fraction of fillers with a size distribution
within the range of70-110 pm. As illustrated in Figure 15.8, with increasing volume fraction
offillers, the magnitude of the mechanical relaxation is decreased and the tan &maximum is
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shifted towards higher temperatures.

109.----------...,

Figure /5.6. Temperature dependence ofthe loss modulus En (0) Matrix epoxy, (0) ES-P,
(~) VS-P, (V) HC-P. "Reprinted from Journal ofMaterials Science 2S (1990) 3327-32,
Kimoto, M.• Flexural properties and dynamic mechanical properties of glass fibre-epoxy
composites, with kind Permission from Chapman and Hall Ltd. "

Figure 15.9, due to Agbossou et al. (1993), shows log E', log En and tan l) spectra
recorded at 5Hz for composites reinforced by 50% volume fraction ofglass beads with two
different size distributions, i.e., within the ranges of 1-45 J.lm and 70-110 J.lm. For 50%
volume fraction ofglass beads, the composite reinforced with the largest glass beads shows
a higher magnitude of relaxation than that exhibited by the composite reinforced by the
smallest ones. Thus, for similar volume fraction of fillers, it can be observed that the
reinforcement-effect increases with decreasing average size ofglass beads. Then, for similar
volume fraction offillers, the specific surface of the glass beads increases as their average size
decreases. Thus, it can be concluded that the interface related to the specific surface of the
glass beads could influence the dynamic response behaviour of such composite materials. In
this context, it may be suggested, following Agbossou et al. (1993) , that the interface in such
composite materials could tend to decrease the molecular motion ability of the matrix and the
interface contribution appears to be greater in composites reinforced with the smallest glass
beads.
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Figure 15.7. Plots of log E' and tan aversus temperature for polystyrene matrix for
various frequencies: (-) 5 Hz, (0) 10.5 Hz, (e) 22.3 Hz, (0) 47.2 Hz and (+) 100 Hz.
"Reprinted from Jouma/ ojMateria/s Science 18 (1993) 1963-72, Agbossou, A., Bergeret,
A., Benzarti, K. and A1berola, N., Modelling of the viscoelastic behaviour of amorphous
thennoplasticJgIass beads composites based on the evaluation of the complex Poisson's ratio
of the polymer matrix, with kind Permission from Chapman and Hall Ltd.".

15.3. "Discontinuous" vs. "Continuous" Fibre-Reinforcement

In the study of the dynamic behaviour of polymeric material systems, loss modulus is as
important as storage modulus, as the former measures sound and vibration damping capacity.
Mclean and Read (1975) showed both experimentally and analytically that discontinuous
reinforcement ofa rubber-like viscoelastic matrix can produce a large increase in both moduli
in the axial direction. On the contrary to the case of continuous fibre-composite systems,
where the ratio ofcompliance to breaking strength is invariant for a given fibre material; with
discontinuous fibre-systems, however, this ratio can be varied. A variable ratio of the
compliance to breaking strength would give more latitude in the design ofvarious structural
and mechamcal components using composite materials.
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Figure /5.8. Plots of log E', log E" and tan ~ versus temperature at S Hz for
polystyreno'glass beads 70-110 pm composite reinforced by: (-) 6%. (0) IS% (e) 21%, (0)
3S%, and (+) SO% volume fraction of fillers. "Reprinted from Journal ofMaterials
Science 28 (1993) 1963-72, Agbossou, A., Bergeret, A., Benzarti, K. and Alberola, N.,
Modelling of the viscoelastic behaviour ofamorphous thermoplastidglass beads composites
based on the evaluation of the complex Poisson's ratio of the polymer matrix, with kind
Permission from Chapman and Hall Ltd.'.

Based on a strain energy model, McLean and Read (1975) assumed that the sum of the strain
energy in the matrix and that in the fibres would give the magnitude of the strain energy in the
composite, i.e.,

(15.1)

and
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where (J and E indicate, respectively, the longitudinal stress and strain.

(15.2)

From their model, McLean and Read arrived at the following expression of the
composite longitudinal modulus Ec in terms ofthat of the matrix Em and ofthe fibre Ef .
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Figure 15.9. Plots of log E'. log E" and tan 6 versus temperature at 5 Hz for: (-)
polystyrene/glass beads 1-45 JUl1 composites reinforced by 50% volume fraction of fillers,
and for (0) polystyrene/glass beads 70-100 pm composites reinforced by 50% volume
fraction of fillers. "Reprinted from Journal ofMaterials Science 28 (1993) 1963-72,
Agbossou, A., Bergeret. A., Benzarti, K. and Alberola, N.• Modelling of the viscoelastic
behaviour of amorphous thennoplasticlglass beads composites based on the evaluation of
the complex Poisson's ratio of the polymer matrix, with kind Permission from Chapman
and Hall Ltd.".
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(15.3)

in which V", and VI indicate, respectively, the volume fraction of the matrix and the fibre,
I is the fibre length and s is the transverse spacing between the fibres.

Using Eqn. (15.3), the composite modulus Ec is plotted versus the fibre volume
fraction Vr in Fig. 15.10 as the solid line for the polymer-carbon fibre composite: Em = 0.03
GN m·2, Er = 400 GN m·2, and the value of lis assuming a square array of fibres on a
transverse section is calculated as

(15.4)

where the fibre aspect ratio r is considered to be equal to 112. Equation (15.3), however,
does not apply when Vr-O as a term pertaining to the effect ofan unreinforced matrix has not
been included.

In Fig. 15.10, the lower curve shows the calculated influence ofthe fibre volume
fraction on the longitudinal composite modulus Ec in the case of discontinuous reinforcement.
The upper curve, however, relates to continuous reinforcement when Er is much greater than
E",.

In the mentioned paper, the composite loss modulus Ec • is defined as

E"c
=
energy dissipated per cycle =

peak energy stored per cycle
(15.5)

in which the symbol h expresses some appropriate function.

Equation (10.5) was further expressed in terms of the constituent parameters as

E"
c

E"
m (15.6)
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Equation (15.6) also fotlows from the elastic-viscoelastic correspondence principle which
enabled the authors to replace Ec and E,. in Eqn. p5.3) by complex moduli
Ec• = E: + i E:' and E; = E~ + i E:. The cUlVe of E~ versus Vr given by Eqn. (15.6) is
drawn in Fig. 15.11 using an experimental value for Em of 0.041 GNm-2•
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Equations
5 and 7

100
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Figure /5.10. The lower cUlVes show the calculated influence of Vr on longitudinal
composite modulus E. in the case of discontinuous reinforcement. The upper cUlVe
relates to continuous reinforcement when Ef > E",. The circles are experimental
measurements. Carbon fibres in soft polymer. "Reprinted from Journal ofMaterials
Science 10 (1975) 481-92, Mclean, D. and Read, B. E., Storage and loss moduli in
discontinuous composites, with kind Permission from Chapman and Hall Ltd.". The
equation numbers shown in the figure pertain to the original paper.
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Figure 15.11. Influence of V, on longitudinal loss modulus E. ". The two upper lines are
theoretical values for discontinuous fibres, and the lower line is the theoretical result for
continuous fibres when E/'<< E.." . The circles are experimental measurements. Caroon
fibres in soft polymer. "Reprinted from Journal ofMaterials &/ence 10 (1975) 481-92,
Mclean, D. and Read, B. E., Storage and loss moduli in discontinuous composites, with

kind Pennission from Chapman and Hall Ltd.". The equation numbers shown in the figure
pertain to the original paper.

15.3.1. DESIGNFLEXffiILITY

In some industrial applications, rubber is reinforced with continuous steel wires or with
continuous polymer fibres. The reinforcement is added to raise the longitudinal tensile
strength. At the same time, it significantly reduces the longitudinal compliance, thus, casting
away one of the favourable merits of rubber. Moreover, little variation is possible in the ratio
of longitudinal modulus to longitudinal strength. To show that with discontinuous
reinforcement much greater latitude in the ratio is possible, McLean and Read (1975) used,
as presented below, the equations for compliance and tensile strength.

Continuous Reinforcement
With continuous reinforcement, the compliance Ccc is expressed by
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(15.7)

where the subscript cc refers to continuously reinforced composite and the elastic modulus
ofthe matrix has been neglected, which, in view ofthe authors, is a reasonable approximation
for the case, for instance, of steel fibres in rubber. The breaking strength, of the composite,
0b is calculated by

(15.8)

(15.9)

where alb is the fibre breaking strength and, again, the matrix contribution has been neglected.

Combining equations (15.7) and (15.8), the ratio of compliance/strength, for a
composite with continuous reinforcement, is

Ccc =-.S...-
°b orbV;

in which Cr is the fibre compliance. The ratio (15.9 ) is invariant with any given matrix and
fibre for a given composite ultimate strength since the fibre-volume fraction Vr is then fixed.

Discontinuous Reinforcement
In this case, Mclean and Read (1975) calculated the composite ultimate strength by

(15.10a)

where it is assumed that one third of the applied load is carried by the matrix. This is under
the condition that 0b < 1/3 0mb Vm , 0mb being the breaking strength of the matrix. In the
case ofrubber reinforced with steel, for instance, alb is approximately equal to 100mb so that
Vr ;5; 0.05. A second condition is that the stress transfer between the matrix and the fibre
must be adequate. When these two conditions are met, Cedi 0b is obtained from equations
(15.3) and (15.10), and it can be varied considerably by altering /Is, i.e. by varying the aspect
ratio r.
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1 1
C d=----

C E
cd

E
f
V

f

(IS.IOb)

Here, CcJ is the compliance for the composite with discontinuous reinforcement. A measure
ofthe extra latitude offered by discontinuous reinforcement is given by the range which CcJ

,ICcc can take for a given breaking strength 0b'

From equations (15.9) and (15.10), it follows that

16
+
4s (15.11)
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Figure /5./1. Showing the extra design flexibility otTered by discontinuous versus
continuous reinforcement. Ced is the compliance of rubber reinforced with steel wires of
aspect ratio r. Ccc is the compliance of rubber reinforced with continuous steel wires to have
the same breaking strength. The ratio C" IC'd can be very large. "Reprinted from Journal
ofMaterials Science 10 (1975) 481-92, Mclean, D. and Read. B. E., Storage and loss
moduli in discontinuous composites, with kind Permission from Chapman and Hall Ltd.".
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The value of Ccd / Ccc for different values of r and Vf has been calculated by
McLean and Read (1975) with Ef = 2 x 10' and Em = 1Nmm -2, which are considered
to be appropriate values for steel and rubber, respectively. The results are shown on Fig 15.12
due to McLean and Read (1975). The tensile strength indicated on Fig. 15.12 is derived from
Eqn. (15.10) assuming 0lb = 1000Nmm-2. Fig. 15.12 shows, e.g., that for a sample breaking
strength of 33 N mm-2, the compliance can be increased 100-fold if continuous wire is
replaced by a discontinuous one. Fig.15. 12, also, illustrates the range ofvariation of Ccd for
a given tensile strength. The ordinate axis shows the wide range of Ccd available by varying
the aspect ratio r.

Dynamic mechanical measurements over a range of temperature provide valuable
insight into the structure, morphology and viscoelastic behaviour of polymeric materials.
These measurements form an important part of the approach for establishing relaxation
transitions. Akay (1993) cautioned, however, that care must be taken in the interpretation
ofdynamic mechanical analysis (DMA) spectra ofcomplex material systems such as advanced
polymer composites, particularly when determining the glass-transition temperature Tg • The
latter is commonly defined as the temperature corresponding to the maximum value of the
loss tangent (tan 0). The glass transition temperature Tg is also sometimes defined as the
temperature corresponding to the maximum value ofthe loss modulusE" , or, alternatively,
as the temperature of the maximum change in real modulus E . DMA data of continuous
carbon-fibre (CF) reinforced epoxy laminates have been studied by Akay (1993) and
represented here in Figures 15.13 and 15.14. These data indicate that glass transition, in the
two considered materials, occurred over different temperature intervals depending on the
mode of testing. As shown in the indicated figures, a sharp transition of low intensity is
indicated in the longitudinal mode where the properties are fibre dominated. The fibres are
stiffer and carry, in this mode, more load than the matrix and, thus, the observable properties
are not appreciably sensitive to variations in the mechanical properties of the matrix. In the
transverse mode, however, both the fibres and the matrix experience the applied stress and,
by consequence, the properties of the composite show much greater sensitivity to variations
in the properties of the matrix. The data clearly show that glass transitions occurred over a
wider temperature range when the tests were conducted in the transverse mode. This was
attributed by the authors to a combination ofthe following reasons:

(i) Non-uniform compliance in the matrix due to various fibre-resin
interactions.

(ii) Non-uniformity of the temperature distributions within the 90"
specimens as compared withe the 0 0 specimens.

With reference to Figures 15.13 and 15.14, different values of Tg , depending on its
definition, can be obtained and this can be misleading:

Tg expressed as the temperature corresponding to the maximum value of tan t5
produced a higher value in the transverse mode compared with the value obtained in
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the longitudinal mode by as much as 25°C without any fundamental reason other than
the broadening of the transition region.

Alternatively. the glass transition temperature T, as corresponding to the maximum
value of E" revealed increases from 2°C to 14°C in the longitudinal mode compared
to the transverse mode. This is more realistic since in the longitudinal mode most of
the load is carried by the fibres and thus the matrix experiences a delayed transition.
Further. the definition of T, by the maximum value of £ "also indicates more
precisely the temperature at which stiffness (as expressed by£') suffers significant
deterioration.
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Figure J5.13. Dynamic mechanical properties for CF/epoxy-a at (A) transverse, (B)
longitudinal modes oftcsting. "Reprinted from Composite Science and Technology 47,
Akay, M., Aspects ofdynamic mechanical analysis in polymeric composites, 419·23, 1993,
with kind pennission from Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington
OXS 1GB, UK".
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Thus, in the class of composite materials considered, Tg , as defined by the
temperature corresponding to E"-maximum value, is considered to be a more
consistent and an appropriate index than the one based on the maximum value of the
tangent modulus tan ~ (Akay, 1993).

Gerard, Perret and Chabert (1990) studied the dynamic mechanical properties of
unidirectional carbon fibre/epoxy matrix composites in order to determine the influence of the
presence of carbon fibre and the effect of surface treatment (untreated, oxidized and sized)
on the behaviour ofepoxy matrix. The study shows that when carbon fibres are introduced
at different volume fractions (from 40% to 70%), the mobility of the macromolecular chains
ofthe epoxy matrix is reduced at the fibre/matrix interface. An oxidization treatment, leading
to a larger number of functional groups present at the interface, increases this effect by
creating additional interactions. However, an epoxy sizing induces a higher mobility by
creating less crosslinked interphases. By studying the viscoelastic properties in a large range
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Figure 15.14. Dynamic mechanical properties for CF/epoxy-b at (A) transverse, (B)
longitudinal modes of testing. "Reprinted from Composite Science and Technology 47,
Akay, M., Aspects ofdynamic mechanical analysis in polymeric composites, 419-23, 1993,
with kind permission from Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington
OXS 1GB, UK".
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oftemperatures and frequencies, the main relaxation of a component of the sizing, displaying
a phase separation in the interphase, could be observed as a shoulder of the secondary
relaxation peak ofthe epoxy matrix. In this context, dynamic mechanical measurements were
performed by the authors with a polymer Lab. DMTAapparatus in a temperature range from
-120 to 250°C and a frequency range from 0.033 to 10Hz. As shown in Figure 15.15, the
viscoelastic spectra ofthe epoxy matrix in unidirectional composites display three relaxations:

i) A major relaxation tr. It is associated with the glass transition of the DGEBA­
MDA matrix and occurs at a high temperature ofabout 180°C.

ii) A secondary relaxation p: It occurs at a low temperature (near - 65°C at 0.1
Hz). It is associated with motions ofsmall parts of the macromolecular chains
(hydroxyether groups and diphanylpropane units)

iii) A third relaxation y: It occurs at about 50°C and corresponds to unreacted
molecular segments and/or crosslink inhomogeneities
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Figure J5. J5. Dynamic mechanical spectrum of unidirectional composite material based
on DGEBA-MDA matrix and AS4 (oxidized carbon fibre). SI% vol. fraction, at I Hz.
"Reprinted from Controlled Interfaces in Composite Materials, Proc. Third International
Conference on Composite Interfaces, H. Ishida (ed.) , May 21-24. 1990, Cleveland, Ohio,
pp. 449-SS, Gerard. 1. F., Perret. P. and Chabert, B.• Study of carbon/epoxy (or interface):
Effect of surface treatment of carbon fibres on the dynamic mechanical behaviour of
carbon/epoxy unidirectional composites, with kind Permission from Elsevier Science Ltd.•
The Boulevard. Langford Lane, Kidlington OXS 1GB. UK".
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The major relaxation, a, of the epoxy matrix in the unidirectional composites was
found to be greatly influenced by the presence ofcarbon fibres, Fig. 15.16. The increase of
1~with fiber volume fraction was attributed by the authors to the restriction of the mobility
of the macromolecular chains at the interface due to interactions with the fibre surface. For
the prelaxation, Fig. 15.17, an additional peak could be observed as a shoulder of the ppeak
at high temperature and for low frequency measurements. In this, the authors postulate that
the carbon surface restricts the mobility ofmacromelocular chains by creating interactions.
Surface treatments such as oxidization which introduce additional functional groups on the
fibre surface, induce an added rigidity at the interfacial zones. However, epoxy sizing leads
to a larger mobilty by creating less crosslinked interphases.

Gibson and Plunkett (1976) considered the determination, both analytically
and experimentally, the elastic stifthess and internal damping ofE-glass fiber-reinforced epoxy
beams under flexural vibration. A mathematical model for predicting the effective complex
moduli ofunidirectional and (0/90) crossply laminated g1ass-epoxy beams to flexural vibration
was presented. The model, which is an extension of previous work by Hashin and Rosen
(1965), employs the complex moduli of the matrix and of the fibres, together with geometric
information pertaining to the microstructure, to predict the effective complex moduli of the
various components. Upper and lower bounds on the moduli, due to Hashin (1965), were
used to show the effects of fibre packing geometry. Comparison ofmeasured and predicted
values of the complex moduli with predicted bounds on the moduli shows that, for small
vibration amplitudes, the predicted values are reasonably accurate. In this context, it was
concluded by Gibson and Plunkett (1976) that damping and stiffness are independent of the
vibration amplitude as long as the maximum strain value does not exceed the threshold strain
for material damage. However, once this threshold strain is exceeded, permanent changes
occur in damping and stiffness. The resulting increase in damping is much more significant
than the corresponding reduction in stiffness.

In the work ofGibson and Plunkett (1976), the composite material selected for the
forced vibration experiments was 3M Scotchply 1002, an E-glass reinforced epoxy, in both
unidirectional and (0/90) crossply configurations. Specimens of pure epoxy, transverse
unidirectional, longitudinal unidirectional, and (0/90) crossply material were tested in order
to find the pertaining storage and loss moduli. Specimens of double-cantilever type were
machined from pre-cured 51 ply thick panels with each ply having a nominal thickness of
0.25mm (0.01 "). Epoxy matrix specimens, of the same double-cantilever type, were cut from
a 3.3 mm (0.13") thick sheet of cured epoxy.

Specimens, after being clamped, were excited in a steady-state, resonant flexural
vibration mode by an electromagnetic shaker while measurements of specimen resonant
frequency, base acceleration, and bending strain were made. Electrical resistance strain gages,
bonded to the surface of the specimen, were used to measure bending strain, while the base
acceleration was measured by a piezoelectric accelerometer mounted on the specimen support
clamp. An electronic frequency counter was used to measure the frequency of the
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accelerometer signal.

Storage and loss moduli found for each series of resonant dwell tests are shown in
10.18 to 10.22. Static storage moduli determined by tensile tests (for the matrix) or 3-point
flexture tests (for the composites) are also presented for comparison with the presented
dynamic values. Figures 15.19 to 10.22 show the predicted moduli and predicted bounds on
the composite moduli.

As shown in Fig. 15.18, the matrix loss modulus, Em", increased by nearly a factor of
two over the range oftest frequencies, while the storage modulus, Em' , increased by only 9%.
Fig. 15. 19 shows very good agreement between measured and predicted values of the
transverse modulus.
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Figure /5./6. Dynamic mechanical spectra (at 0.1 Hz) for unidirectional composites based
on different volume fractions of carbon fibres: (e) 60%, (£1) 64.4%, (£1) 68 %. "Reprinted
from Controlled Interfaces in Composite Materials, Proc. Third International Conference
on Composite Interfaces, H. Ishida (ed.) , May 21-24, 1990, Cleveland, Ohio, pp. 449·55,
Gerard, J. F., Perret, P. and Chabert, B., Study of carbon/epoxy (or interface): Effect of
surface treatment ofcarbon fibres on the dynamic mechanical behaviour of carbon/epoxy
unidirectional composites, with kind Permission from Elsevier Science Ltd.. The Boulevard,
Langford Lane, Kidlington OX5 1GB, UK".
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Figure 15.17. Prelaxation ( I) of the epoxy network in UD carbon/epoxy composite as a
function of a frequency of measurement, (480/0 vol. Fraction of T300 carbon fibres)
(additional relaxation ( I )due to the sizing) (a venical shifting has been used to clarify the
figure). "Reprinted from Controlled Interfaces in Composite Materials, Proc. Third
International Conference on Composite Interfaces, H. Ishida (ed.) , May 21-24, 1990,
Cleveland, Ohio, pp. 449-55, Gerard, J. F., Perret, P. and Chaben, B., Study of carbon/
epoxy (or interface): Effect ofsurface treatment of carbon fibres on the dynamic mechanical
behaviour ofcarbon/epoxy unidirectional composites, with kind Pennission from Elsevier
Science Ltd., The Boulevard, Langford Lane, Kidlington OX5 1GB, UK".

Comparison of the magnitudes of Er" for the transverse ply (Figure 10.19) with
those of EL ' for the longitudinal ply (Figure 15.20) indicates that, in the crossply laminate,
most ofthe dissipation occurs in the transverse plies. Since the matrix is far more dissipative
than the fibers are, one would expect that the configuration in which the matrix is subjected
to the greatest strain (the transverse ply) would be more dissipative than the configuration in
which the matrix carries the least strain (the longitudinal ply). As shown in Fig. 15.20, the
value of EL ' determined by static flexure shows good agreement with measured and predicted
dynamic values. Although, as shown in Fig. 15.20, the relative differences between predicted
and experimentally determined values of EL " are significant, the corresponding relative
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differences are not as great for the 0/90° crossply laminate, as shown in Figure 15.21. In the
latter case, the experimentally determined values of Ec " are slightly greater than the
predicted values, but are generally below the upper bound. The differences are attributed by
the Gibson and Plunkett (1976) to the longitudinal plies, as the resulting calculated values of
the crossply loss modulus are much closer to the experimentally determined values than are
the calculated values based on the properties of the fibers and the matrix (Figure 15.22).
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Figure 15.18. Matrix storage and loss moduli versus frequency. "Reprinted from J.
Composite Materials 10. Gibson, R. F. and Plunkett, R., Dynamic mechanical behaviour
of fibre-reinforced composites: Measurement and analysis, 325-41, 1976, with kind
permission from Technomic Publishing Co. Inc., Lancaster, PA".
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Among other conclusions arrived at by Gibson and Plunkett (1976), one may
emphasise the followings:

I. Measured and predicted storage moduli of the glass-epoxy composites tested are
practically independent ofvibration frequency over the nominal range from static to
500Hz.

2. Measured and predicted loss moduli of the composites all increased with increasing
frequency in the range from static to 500 Hz. Frequency dependence of the composite
loss moduli is governed by the viscoelastic behaviour of the epoxy matrix.
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Figure 15.19. Storage and loss moduli versus frequency for transverse ply material.
"Reprinted from J. Composite Materials 10, Gibson, R. F. and Plunkett, R., Dynamic
mechanical behaviour of fibre-reinforced composites: Measurement and analysis. 325-41,
1976, with kind permission from Technomic Publishing Co. Inc., Lancaster, PA".
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3. The predicted and measured values of the complex transverse and longitudinal
extensional moduli are within the predicted bounds on the transverse moduli; actual
storage moduli are close to the lower bound on the storage modulus, while actual loss
moduli are close to the upper bound on the loss modulus.

4. Damping and stiffitess of the crossply laminate tested in flexure are independent of
amplitude as long as the maximum strain value does not exceed the magnitude of the
fracture strain ofthe transverse plies, otherwise, the material damage causes increased
damping and decreased stiffitess.

5. Damping is far more sensitive to microstructural damage in the composite than is
stiffitess.
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Figure JJ. 20. Storage and loss moduli versus frequenCy for longitudinal ply material.
"Reprinted from J. Composite Materials 10, Gibson, R. F. and Plunkett, R., Dynamic
mechanical behaviour of fibre-reinforced composites: Measurement and analysis. 325-41,
1976, with kind pennission from Technomic Publishing Co. Inc., Lancaster, PA".
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15.4. Sheet Molding Compounds (SMC)

Recent activity in composite materials research in the automobile industry has led to
the development of inexpensive choped fibre reinforced plastics, often referred to as sheet
molding compounds (SMC). These materials are generally made up of25.4 mm (1 in) long
glass fibres randomly dispersed in a polyster resin matrix. Static mechanical properties of
SMC are reasonably well characterized (e. g., Heimbuch and Sanders, 1978 and lutte, 1978),
but scarce results have been reported on dynamic response properties of such material.
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Gibson and Yau (1980) presented measurements of complex moduli of SMC-25
(25% by weight random E-glass fibers in a polyster matrix), of SMC-R65 (65% by weight
random E-glass fibers in a polyster matrix), and ofXM-3 (25% by weight random E-glass
fibers, 50010 by weight continuous E-glass fibers@ ± 7.50 in a polyster matrix). Comparison
of the obtained results were compared with previously obtained data on continuous fiber
composites. The latter are unidirectional and crossply configurations of 3M Scotchply
(approximately 50010 by volume continuous aligned E-glass fibers in an epoxy matrix). In the
referred-to paper, Gibson and Yau (1980) have shown that the use ofcomplex modulus to
describe the small-amplitude dynamic behaviour of chopped fiber and of continuous fiber
reinforced plastics is appropriate since both stiffuess and damping are independent of
amplitude.

The approach taken by Gibson and Yau (1980) is to see if the complex moduli fall
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within the so-called "elementary bounds". For this purpose, bounds on the elastic moduli of
composite materials have been derived using a variety ofmethods. Paul (1960), for instance,
used the principles ofminimum potential energy and minimum complementary energy to show
that the bounds on the Young's modulus ofa macroscopically isotropic, two-phase composite
with an arbitrary phase geometry are

(15.12)

where the upper bound is theoretical1y valid only if the two Poisson's ratios, i.e., of the fibre
and matrix are equal. On the other hand, Hill (1964) showed that, when the transverse strain
mismatch due to differences in Poisson's ratios is accounted for, the upper bound may be
taken as

(15.13)

which reduces to the same equation (15.12) when the Poisson's ratios of the fibre and matrix
are equal.

Due to the random orientation of fibers in SMC, the properties should be nearly
isotropic, and the assumptions leading to (15.12) may be applicable. Wolf and Came (1979),
for instance, showed that the anisotropy of SMC stiffness is less than 10%. In a transversely
isotropic continuous fibre composite, these bounds may be applied to the transverse modulus
(i.e., perpendicular to the fibres).

To establish the bounds on the complex viscoelastic moduli, Gibson and Yau ( 1980)
used the Correspondence Principle, fol1owing Hashin (1970 a&b), and replaced the elastic
moduli in (15.12) with the corresponding complex moduli. The resulting bounds on the
storage modulus of the composite are the same as those in (15.12). That is.

and

(15.14)

E '(-) = Re
c v

+~

E'
m

(15.15)



www.manaraa.com

324

Meantime, the corresponding "bounds" on the loss moduli ofthe composite are

E"(+) = 1m
c v

+ -!!!.
E+

m

(15.16)

as it can be shown that

1m

(15.17)

(15.18)

The use ofequations (15.14) - (15.17) requires knowledge of the complex moduli and
volume fractions of the fibres and the matrix resin. As a first approximation, the fibres are
assumed to be elastic, i.e. E(' = 0; since data on glass fiber damping might not be easily
accessible.

The measured complex moduli and the estimated bounds on the moduli of the SMC
materials are shown in Figures 15.23 to 15.25. The validity of the data here is supported by
the overlap between the data for different modes ofvibration and between specimens. Static
modulus data provide an additional check on the storage modulus. As shown in the figures,
while the measured storage moduli generally fall within the bounds, the loss moduli are
significantly greater than the upper bounds for SMC·R25 and SMC-R65. The measured loss
moduli for XMC-3 fallon both sides of the upper bound, but most of the data fall above the
bound. As mentioned earlier, the bounds are based on the assumption that no dissipation
occurs in glass fibres. Comparing the results ofFig. 15.23 with those of Fig. 15.24, one sees
that the relative separation between measured loss moduli and the corresponding upper bound
is greater for SMC-R65 than for SMC-R25. Since the SMC-R65 composite has more fibres
per unit volume than the SMC-R25, it follows that the total matrix-fibre interfacial area of
SMC-R65 would be greater than that of the SMC-R25. Thus, any dissipation mechanism
operating at the interface would have more effect on the damping of SMC-R65 than on that
of SMC-R25. Figure 10.25 shows that the storage modulus for the XMC-3 longitudinal
specimens fall near the upper bounds, while the storage modulus for the XMC-transverse
specimen falls near the lower bound. The loss moduli for both specimens fall near the upper
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bound, however, it is also likely that additional dissipation occurs by virtue of fibre
discontinuity and resulting shear stress concentrations at the fibre ends. '
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Figure 15.23. Measured complex moduli and estimated bounds for SMC-R25. _ Upper
Bound, - - - Lower Bound,0 Specimen A, • Specimen B. "Reprinted from J. Composite
Materials 14, Gibson, R F. andYall, A., Complex moduli of chopped and continuous fibre­
composites: Comparison ofmeasurements with estimated bounds, 155-67, 1980, with kind
permission from Technomic Publishing Co. Inc., Lancaster, PA",

Figures 15.26 and 15.27 present the corresponding data for the case of a continuous
fibre-composite 3M Scotchply. There is less scatter in the loss modulus data here than in
Figures 15.23 to 15.25, because only first and second modes were used (the data in Figures
15.23 to 15.25 were obtained by testing up through the fifth mode, and it was postulated by
the authors that the proximity of strain gages to nodal points in the higher modes produced
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more errors in the data). The storage and loss moduli generally fall within the bounds for all
three configurations (longitudinal, transverse, and cross ply).
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Figure /5.24. Measured complex moduli and estimated bounds for SMC-R65, _ Upper
Bound, - - - Lower Bound,o Specimen A, • Specimen B. "Reprinted from J.
Composite Materials 14, Gibson, R. F. and Yau, A., Complex moduli of chopped and
continuous fibre<omposites: Comparison ofmeasurements with estimated bounds, 155-67,
1980, with kind permission from Technomic Publishing Co. Inc., Lancaster, PA".

Along with the continuous competing requirements for improving the weight,
interdisciplinary performance, and reliability of composite components, the development of
real time non-destructive "health-monitoring" techniques based on the global dynamic
characteristics of the composite structure is receiving growing attention (e.g., Lee et al.,
1987, Tracy and Pardoen, 1989, Grady and Meyn, 1989, Raju et al., 1992). In this realm, one
approach is concerned with developing the capability to detect delamination by monitoring
changes in the dynamic response characteristics.
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Figure J5.25. Measured complex moduli and estimated bounds for XMC-3, _ Upper
BOIUld, - - - Lower Bound,0 Measured Longitudinal, AMeasured Transverse. "Reprinted
from J. Composite Materials 14, Gibson, R. F. and Yau, A., Complex moduli of chopped
and continuous fibre-composites: Comparison of measurements with estimated bounds,
155-67, 1980, with kind permission from Technomic Publishing Co. Inc., Lancaster, PA".

Although significant work has been reported in the general area of delamination
prediction and growth, limited research efforts have been reported on structural dynamic
characteristics. Tracy and Pardoen (1989), and Hanagud et aJ. (1992), for instance, have
considered the effects of a single delamination on the natural frequencies and modes by
applying the classical beam theory on a delaminated beam offour longitudinal distinct regions.
Saravanos (1993) considered the development ofa discrete laminate mechanical approach for
predicting the effects ofdelamination on the dynamic characteristics of composite laminates
including damping. An analytical procedure was introduced for the prediction of natural
frequencies, modes and modal damping in composite beams with an interlaminar
delamination. The predicted effects of delamination vary based on crack size, laminate
configuration, and mode order. The results also indicate that delamination effects could be
more profound in angle-ply laminates due to resultant changes in the extension-flexure and
flexure-twisting stiffuessldamping coupling in the delaminated sections.
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Figure 15.26. Measured storage moduli and estimated bounds for 3M Scotchply.
"Reprinted from J. Composite Materials 14. Gibson. R. F. and Vau, A.• Complex moduli
ofchopped and continuous fibre-eomposites: Comparison of measurements with estimated
bounds. 155-67. 1980, with kind pennission from Technomic Publishing Co. Inc.,
Lancaster. PA".

1000

The developed method was applied to predict the dynamic characteristics of cantilever
composite beams with a single delamination. Predicted natural frequencies were correlated
with reported measured data of a [0/90]21 TJOO/934 graphite/epoxy cantilever beam and a
[90/45/-45/0]2. simply-supported AS4/3501-6 graphite/epoxy beam. In all experimental
results, the delamination was artificially induced during the lay-up of the composite using a
teflon tape. Subsequently the effects of a central delamination on the first three modal
frequencies, damping and shapes of cantilever beams were investigated. The composite
material in this case was either 0.60 FVR TJOO/934 epoxy or 0.50 FVR HM-S
GraphitelEpoxy. Three types ofbeam configurations were considered with ply thickness of
0.127 mm (0.005 in) each: cross-ply [0/90h., [0/90/45/-45], and [45/-45/90/0]. laminates.
All beams were assumed to have a delamination at their mid-plane. The delamination was also
assumed to be symmetrically located about the centre of the beam (50% span).
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Figure /5.27. Measured loss moduli and estimated bounds for 3M Scotchply. "Reprinted
from J. Composite Materials 14, Gibson, R F. and Yau, A., Complex moduli of chopped
and continuous fibre-composites: Comparison of measurements with estimated bounds,
ISS~7, 1980, with kind permission from Technornic Publishing Co. Inc., Lancaster, PA".

[O/90b Beam:
The predicted effects ofdelamination crack length on the modal characteristics of the [O/90b
beam are shown in Fig. 15.28. The effects of crack length on the first three bending mode
shapes of the beam are shown in Fig. 15.29. Local opening modes were also observed for
large delamination lengths, but they are not presented herein (Saravanos, 1993). As a general
trend, the delamination reduced the natural frequency and increased the modal damping of the
structure, even with friction effects being neglected. The effects of delamination were more
obvious in the characteristics and shapes of the higher modes. The delamination did not
change significantly the modal frequency, damping, and shape ofthe fundamental mode. Small
delaminations (less than 20%) produced little change in most modal characteristics. The
damping of the third mode appears to be a promising "early" damage indicator for this type
of laminate (Saravanos, 1993). As presented in the same article (Saravanos, 1993), the
presence ofa central delamination drastically reduces the flexural rigidity of the delaminated
portion, but on the other hand is increasing both strain energy and laminate damping in the
delaminated sub-laminates. This explains the reductions in modal frequencies and the increase
in modal damping.
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Figure 15.28. Effect of delamination size on modal frequencies and damping of the
(0190110 beam. "Reprinted 110m NCA-Vot. 16/AMD-Vol. 172, Saravanos, D. A., Mechanics
for the effects of delamination on the dynamic characteristics of composite laminates,
ASME 1993, pp. 11-21, with kind pennission from ASME International, New York, NY",

[0/90/45/-45]. Beam:
A more general laminate configuration was investigated by Saravanos (1993) in this case.
The modal characteristics of the beam are shown in Table 15.1 (pristine beam) and in Fig.
15.30 for various crack length. The effects ofcrack length on the first three mode shapes of
the beam are shown in Fig. 15.31. Most ofthe trends described in the previous case are also
observed here, although they are more profound than in the previous case. The delamination
effects are more observable in the higher modes and the characteristics of the fundamental
mode provide minimal damage indication.
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TABLE 15.1. Modal frequencies and damping of pristine cantilever beams (Saravanos,
1993)

Lamination {O/90h {O/90/45/-45J. {45/-45/90/0J.

Modal SDCs, %

Mode I 0.95 0.572 1.964
Mode 2 0.95 0.572 1.964
Mode 3 0.95 0.572 1.964

Natural Frequencies, Hz

Mode I 78.6 87.3 39.8
Mode 2 492.6 547.2 249.5
Mode 3 1379.2 1532.3 698.4

[45/-45/90/0]. Beam:
The natural frequencies and the corresponding modal damping and mode shapes ofthe beam
are shown in Table 15.l and in Figures 15.32 and 15.33, respectively for various crack sizes.
Contrary to the former cases, the effect of delamination on the mode shapes and natural
frequencies is modest. The damping is more sensitive at the presence of the delamination, but
depending on the mode order, the damping may either increase or decrease. The effects of
various thermal treatments on the dynamic properties ofPEEK (Polyether ether ketone) and
carbon fibre reinforced PEEK (APC2) have been studied by Folkes, Kalay and Ankara
(1993). PEEK is one of a new generation of engineering polymers having good high
temperature properties. As such, it has received much attention as a likely contender in
replacing more traditional thermosetting resins. Continuous carbon fibre reinforced PEEK has
also been developed and can offer favourable physical properties. This type ofcomposite is
referred to as "aromatic polymer composite (APC2). In addition, these materials have
comparatively short processing cycles by virtue oftheir thermoplastic nature.

A Rheometrics RSA2 Solids Analyzer was used by Folkes et al. (1993) to record the
dynamic mechanical spectra of the various specimens. Unclamped, three-point bend testing
at a frequency of62.8 rad s·\ was used.The specimen dimensions were approximately Imm
x 6.5 rom x 48 mm and 3.25 mm x 6.5 mm x 48 rom for APC2 and PEEK samples,
respectively. A strain of 0.01 was applied to the samples, and the heating rate was
2,SOC min".
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Rotem (1993) studied the fatigue behaviour ofa [O/± 45/90] graphite/epoxy laminate
under reverse loading at different frequencies. It was found that for this laminate, the
interlaminar stresses at the free edges dominate the fatigue life by introducing interlaminar
cracks which cause the laminate to collapse under the compression portion ofthe load cycle.
This failure occurred at all frequencies that were studied, namely, 0.1, 1,2.8, to and 28 Hz.
It was reported by Rotem (1993) that the fatigue life decreases considerably as the frequency
rises from 2.8 Hz to 10 Hz, while the changes as frequency increases from 0.1 Hz to 2.8 Hz
and from 10Hz to 28 Hz were more moderate. It was also found that the axial modulus
hardly changes in this frequency range and therefore, as was advanced by Rotem (1993) , it
cannot be the cause of the fatigue life decrease. It was suggested, however, that the reason
for the reduction of fatigue life could be due the heat generated at the free edge location by
the hysteresis of the stresses amplitude. More heat is generated on the higher frequency
loading which cause higher temperature at these locations. The higher temperature reduces
the local strength and causes earlier crack initiation which results in shorter fatigue life.
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0.2o
1.5.-------------......,

Mode 3
1.0..

~ 0.5

{ 00~----~1t:_--__;;L___1

-0.5

-1.00 0.2 0.4 0.6 0.8
Normalization Length (xii)

Figure 15.33. Effect of delamination on the mode shapes of the 145/·45/90/01. beam.
"Reprinted from NCA-Vol. I6IAMD-Vol. 172, Saravanos, D. A., Mechanics for the effects
of delamination on the dynamic characteristics ofcomposite laminates, ASME 1993, pp.
11-21, with kind permission from ASME International, New York, NY".
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Figure 15.34. The dynamic mechanical spectnun ofPEEK. "Reprinted from Composite
Science and Technology 46, Folkes, M. 1., Kalay, G. and Ankara, A., The effect of heat
treatment on the properties of PEEK and APeZ, 77·83, 1993, with kind pennission from
Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington OX5 1GB, UK".

The results of the fatigue tests of the isotropic laminate for two loading frequencies
are shown in Fig. 15.36, as well as the SoN curves fitted to these data (Rotem, 1993). The fit
was done by the least squares regression technique and it can be seen that the fatigue lifes at
the higher frequency (10Hz) are much shorter than those at the lower frequency (2.8 Hz). In
effect, the S-N curve for the 10Hz tests indicates a fatigue life of about one tenth of the
fatigue life ofthe 2.8 Hz SoN curve. Since fatigue loading was tension-compression with zero
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mean, there was no creep effect and the entire degradation process took place within the
interlaminar zones.

Adding the test results for the other frequencies shows a very interesting phenomenon,
as shown in Fig. 15.37. The lower frequency results tend to crowd at the 2.8 Hz location
while the higher frequency results tend to crowd at the 10Hz location. It seems that for this
material, therefore, the strongest effect of frequency is between 2.8 Hz and 10 Hz. It is clear
from the results on Fig. 10.37 that the frequency effect is not linear.

There is a good correlation between the failure processes and the stiffness behaviour.
Figure 15.38 is a plot of the modulus change for fatigue loading frequency of 10 Hz. The
failure process showed the beginning of inter-laminar crack initiation at about 99% of the
fatigue life, meantime the accelerated modulus degradation starts at about 90% of the fatigue
life as seen in the two examples on Figure 15.38. On the other specimens, Fig. 15.39, for
which the loading frequency was 1Hz, the accelerated modulus degradation also starts at
about 96% of the fatigue tife, for different load levels which gave different fatigue life.
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Figure 15.35. The dynamic mechanical spectrum of APC2. "Reprinted from Composite
Science and Technology 46, Folkes, M. 1., Kalay, G. and Ankara, A., The effect of heat
treatment on the properties of PEEK and APC2, 77-83, 1993, with kind pennission from
Elsevier Science Ltd, The Boulevard. Langford Lane, Kidlington OXS IGB, UK".
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Figure 15.36. Fatigue results of two loading frequencies at R= - 1. "Reprinted from
Composite Science and Technology 46, Rotem, A., Load frequency effect on the fatigue
strength of isotropic laminates, 129-38, 1993, with kind permission from Elsevier Science
Ltd, The Boulevard, Langford Lane, Kidlington OX5 1GB, UK".
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Figure 15.37. Fatigue results of five loading frequencies at R= - 1. "Reprinted from
Composite Science and Technology 46, Rotem, A., Load frequency effect on the fatigue
strength of isotropic laminates. 129-38, 1993, with kind permission from Elsevier Science
Ltd, The Boulevard, Langford Lane. Kidlington OX5 1GB, UK".
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15.5. The Trade-off between Damping and Stiffness in the Design of Discontinuous
Fibre-Reinforced Composites

It is well-known that lightweight fibre-reinforced polymer composite materials have higher
specific strength and stiffitess when compared with conventional structural materials such as
metals. Much effort has been devoted to the improvement and optimization of these
properties in various composite structures. Good vibration damping properties are also
particularly important for composite structures when they are used under dynamic loading,
such as in aerospace structures and rotor blades. Due in part to the extensive accumulated
experience with conventional structural materials which in general have poor internal
damping, the potential for the improvement and optimization ofdamping in fibre- reinforced
composites has not been yet fully realized. Meanwhile, the full use of discontinuous fibre­
reinforcement has not been yet fulfilled in composite materials research. This is due, on the
other hand, to the direct accomplishment of higher specific strength and stiffitess in the more
familiar continuous fibre composites.

In the conventional damping theory, the loss tangent tan ~, often referred to as the
damping factor, is assumed to vary comparatively little with frequency for a large class of
polymers, particularly at temperatures near the polymer glass-transition temperature (e.g.,
Nashif et al., 1965). Thus, a large number of researchers, by following this assumption,
considered in their models that the damping factor to be constant. However, in the case of
fibre-reinforced composites, and, in particular, discontinuous fibre composites, the damping
factor is a frequency dependant, as it relates strongly with the particulars of the
microstructure, e.g., fibre-aspect-ratio, fibre volume faction and fibre off-axis angle; e.g.,
Gibson and Yau (1980), Gibson et al. (1982), Sun et al. (1985), and Suarez et al. (1986).

The damping properties ofcontinuous fibre composites have been studied by a number
ofresearchers; e.g., Bert and Clary (1974) and Bert (1980). There are relatively few research
publications on the damping of discontinuous fibre composites. However, studies reported
by, for instance, McLean and Read (1975) and Gibson et at.(I982) indicate that vibration
damping offibre-reinforced composites, ofpolymeric matrix, may be significantly improved,
and possibly can be readily optimized by using, as a reinforcement, discontinuous fibres
rather than continuous ones.

A possible explanation ofthe above mentioned advantages concerning the damping
of discontinuous fibre composites is the presence of shear stress concentration at the fibre­
segment ends, and, thus, the shear loading transfer mechanism that occurs between the
reinforcement and the matrix material. In this context, it is often argued in the literature that
shear deformation is primarily responsible for the vibrational energy dissipation in viscoelastic
materials such as polymers. An approximate stress distribution along a short fibre embedded
in a continuous matrix was reported, for instance, by Cox (1952).

The research work ofGibson and Yau (1980) and Gibson et al. (1982) indicates that
by varying the fibre-aspect-ratio and fibre orientation, highest damping and maximum stiffness
could be achieved separately. This observation implies that the optimum conditions (in terms
ofmicrostructural parameters such as fibre-aspect-ratio and orientation) for damping may not
be necessarily the same for stiffness. Consequently, it is important to study the influence of
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the various governing microstructural parameters as pertaining to both damping and stiffitess.
The optimization, in terms of the microstructure, of this trade-off between damping and
stiffitess is the main intention of this section.

It is obvious that the most ideal situation for designing a discontinuous fibre­
reinforced polymer composite structure is to optimize the damping and stiffhess
simultaneously with respect to the microstructure controlling parameters. In this context, the
general procedure ofthe "Force-Balance Approach", e.g., Sun et al. (1985), is used below
in this section to formulate an analytical model pertaining to the optimization of the damping
and stiffitess ofa class ofdiscontinuous fibre-reinforced composite materials. In this context,
a multi-objective optimization functional is established to optimize these two properties
simultaneously. In this context, a particular application, i.e., concerning a discontinuous E­
glass/epoxy composite system, is dealt with in this section (see Feng; 1999, and Haddad and
Feng, 1999).

15.5.1. INFLUENCE OF SELECTED MICROSTRUCTURAL PARAMETERS

There appear to be two primary sources ofdamping in fibre-reinforced composites:

(i) the extent of the viscousc nature of the bulk matrix, and
(ii) the friction mechanism at the interface as caused by the relative

motion between the matrix and the fibre.

Both of these effects may prove to be particularly significant in polymeric base
composites that are reinforced with discontinuous fibres, whereas high shear stresses are often
developed at the fibre-matrix interface. When a short-fibre composite is subjected to a cyclic
loading, the matrix at regions surrounding the fibre-segment and adjacent to its ends
undergoes high cyclic shear strains, thus, producing significant viscous energy loss. The shear
stress concentration at these regions may also induce partial debonding at the fibre/matrix
interface that might eventually result in a slip between the fibre and the matrix and, thus, in
accompanying frictional losses. Such a fibre/matrix debonding would, however, affect
adversely the stiffness of the composite and, by consequence, its ultimate strength. It is,
however, often argued in the literature that it is often desirable to have a strong interfacial
bond so that slip at the interface could be avoided. If this is accomplished, then, the most
viable source of possible enhanced dissipation would appear to be the occurring shear
deformation in the matrix as a result of the shear stress concentration adjacent to the fibre
ends. Based on the particular mechanism of stress transfer between the fibre and the matrix,
it is obvious that there are several microstructural parameters (e.g. fibre-aspect-ratio, fibre
volume fraction, fibre/matrix modulus ratio, etc.) that could influence the shear stress
distribution surrounding the fibre-segment. The situation becomes further complicated when
the interaction between neighboring fibre-segments, in the composite laminate, is taken into
account.
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Force-Balance Approach
As mentioned earlier, the ''Force-Balance Approach" is used below in this section to predict
the damping and stiffiless for this class ofmaterials. The ''Force-Balance Approach" is often
regarded as a combination ofelastic mechanics-of-materials analysis, which could reasonably
predict the stress transfer at the fibre/matrix interface, in conjunction with the well-known
elastic-viscoelastic correspondence principle of linear viscoelasticity; e.g., Hashin (1970) and
Haddad (1995).

The basic assumptions for the "Force Balance Approach" are:
- A round fibre is surrounded by a cylindrical matrix under the effect of an
extensional load. This is illustrated in Figure 15.40 below.
- Both the fibre and matrix are isotropic.
- The mechanical response of the matrix is linear viscoelastic.
- The fibre contributes, to a certain extent, to the overall energy dissipation in
the composite specimen.
- The bonding between the fibre and the matrix is assumed to be perfect.
Further, the fibre/matrix interface is assumed to have the same viscoelastic
properties of the bulk matrix.
- The load transfer between the matrix and the fibre depends upon the
difference between the actual displacement at a point on the interface and the
displacement that would exist if the fibre were absent.

R

---------------- ----Ma~rix
------
Fibre

1
/

1

(a) (b)

Figure J5.40. Representative volwne element (a) Aligned case. (b) Off-axis case. (Adapted
after Sun, C. T., Gibson, R F. and Chaturvedi, S. K. (1985), Journal ofMaterials Science
20,2575-85. with kind permission from Kluwer academic publishers, Dordrecht).
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In the force-balance approach, the expression for the elastic stiffitess of a
discontinuous-fibre composite is derived from the average fibre stress as based upon using
Cox's analytical model concerning fibre stress distribution (Cox, 1952). Subsequently, the
elastic-viscoelastic correspondence principle is employed to obtain the expression for the
complex modulus of the assumed linear viscoelastic composite laminate. This involves the
replacement ofthe static elastic moduli of the fibre, matrix and composite in the expressions
resulting from the linear elastic analysis, with the corresponding viscoelastic moduli. In the
case ofsinusoidal loading, the expression for the arrived at complex modulus would involve
both the storage and loss moduli.

For a typical representative volume element, Figure 15.40, the expression of the
longitudinal modulus E" of the composite along the loading axis may be expressed (see

Agarwal and Broutman,1980 and Feng, 1999) by:

I cos
4 a sin

4a ( I ) . 2 a 2 a- :: -- +-- + -- sm cos
Ex EL ET GLT

(15.19)

where Eu ET and GLT are the longitudinal modulus, transverse modulus, and in-plane shear
modulus, respectively, and can be expressed in tenn of both the fibre and matrix material
parameters, i. e., E, Em' G, Gm, etc, and the fibre volume fraction Vft by using, for instance,
the rule-of-mixtures if one deals with a continuous fibre composite. For a short fibre
composite, however, one cannot use the rule-of mixtures to represent the longitudinal
modulusEL . For the latter case, i.e., a short fibre composites, the longitudinal modulus would
depend also on the fibre aspect ratio, lid. Based upon the shear-lag model (Cox, 1952), EL

may be expressed for the case of short fibre composite by (Feng, 1999)

E = E ( I - tanh (X/2) ) V + E (I - V ) (15.20)
L f (X/2) f m f

where,

2= 4 Gm (Ud)2
X E

f
In(2R/d) (15.21)

The ratio Rid, as illustrated in Figure 15.40, is related to the fibre volume fraction Vft for the
particular packing array under consideration. For instance,

For a square array: (:r:: 16~r (15.22)

For a hexagonal array: (15.23)
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Based upon the work of Gibson, et al. (1982), the packing geometry has an
insignificant effect on the magnitude ofdamping. Thus, we adopt, in the following analysis,
expression (15.22) corresponding to the square packing array. Combining equations (15.21)
and (15.22), it follows that

(15.24)

Equation (1 5.24) above shows that the parameter X is essentially a function of the fibre
matrix stiffness ratio EfIG"" fibre-aspect-ratio lid, and the fibre volume fraction ~.

The transverse modulus Er and the transverse in-plane shear modulus Gm of the
short fibre composite, are almost independent offibre-aspect-ratio lid. In this context, Feng
(1999) used the following prediction equations adopted by Halpin-Tsai in their model
concerning continuous fibre composites (e.g., Agarwal et al., 1980),

(15.25)

(15.26)

where the coefficients 111 and 112 of above equations can be expressed, respectively, as

(15.27)

(15.28)

The Poisson's ratio vLr of the short fibre composite, which is assumed to be insensitive to
fibre length, may be expressed, using the 'rule-oj-mixture' form, as

(15.29)

According to the previous assumptions, both the fibre and matrix are considered to
behave in a linear viscoelastic manner. This permits us to use the elastic-viscoelastic
correspondence principle (e.g., Haddad, 1995) in order to redefine the basic material
properties as,
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Ex' =E~ + i E;

Er' = E; + i E;
E~ =E~ +iE:

G~ =G~ +iG:

(15.30)

(15.31)

where, as introduced earlier, the over-prime designates the storage modulus and the double
over-prime designates the loss modulus. Meantime, the damping (or loss) factor is defined as
the ratio between the loss modulus to the storage modulus, i.e.,

TIc =E; I E~

Tlr = E; IE;

TIm = E:/E~

TlOm =G:/G~

Upon using equation (15.30), equation (15.20) and equations (15.24) to (15.28) may be
written, respectively, as

2 (G~ +iG:)(l/d)2

X· = 8 () 1/2• • 1t
(Er + i Em) In ­

4Vr

(15.32)

(15.33)

(15.34)

(15.35)
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(15.36)

(15.37)

Substituting E~ ,E; and G~T from equations (l5.32), (13.4) and (15.35) for Eu Er and Gm
respectively, and Ex' for Ex into equation (15.19), one obtains

(15.38)

This equation can be used to determine E~ and E; for the composite by separating its real
and imaginary parts.

Examining equation (15.32), one finds that E~ is an exponential function of oX: which
depends upon the complex stiffuess ratio G~/E;.

Since the loss moduli are generally small, one may neglect the higher order terms of loss
factors such as 11: and 110m11r' Following this approach, and by careful manipulation, one
can obtain the following expression from equation (15.33) as,

X' X[}. ]- = - 1 + - I ( 11 - 11r)
2 22 0m (15.39)

Then, one may use a Taylor's series approximation and similarly neglect any resulting higher
order terms in the loss factors to obtain

• (11 - 11 )
tanh x.. = tanh X + iX Om f

2 2 4 h2Xcos -
2

(15.40)
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Final!y, b¥ combining equations (15.32 to 15.40), one determines analytical representations
of Ex, Ex and 11x as dealt with by Feng (1999) and Haddad and Feng (1999).

The analytical expressions reached out by Feng (1999) are represented here symbolically as,

(15.41)

(15.42)

(15.43)

In the equation (15.43), 11x is defined as the ratio of E;I E~ and will not have the same
changing pattern as Ex' Therefore, two dependent variables, the non-dimensional ratio
E~I E~ and the non-dimensional ratio 11/11m, a~e used in the following numerical
presentation. In general, from the expressions forEx and 'lx, e.g., equations (15.41) and
(15.43), we have eleven variables, namely Ef'Em,e, Vr,Gm, 'If> 'lm' 'lOm' "f' "m and the fibre­
aspect-ratio ~/d. An optimization that would include all possible variations of these eleven
variables are almost impossible and unnecessary. Therefore, in the following optimization
analysis, we choose, as a particular example, the matrix material to be Scotchply epoxy and
the fibre-reinforcement to be ofE-g1ass in the dealt with composite layer. The corresponding
material properties ofthese two selected materials are presented in Table 15.2. Consequently,
we narrow down the optimization variables to three, namely, 6, Vrand Ud.

For a large class ofcomposite materials used in aerospace and automotive industries,
the fibre volume fraction varies within the range of 50 to 70%. Meanwhile, the observation
made by Cox (1952) shows that, for short fibre reinforced composites, the reduction ofthe
effective longitudinal modulus due to the load transfer from fibre to fibre is considered
significant only for fibre aspect ratios, ~/d, less than 100 Therefore, one could set that the fibre
volume fraction to range from 50010 to 70010 and the fibre aspect ratio to range from I to 100.

Figures 15.41 to 15.45 are obtained by setting, respectively, the fibre of-axis an~le ~
as 0°, 40°, 60°, 80° and 90°, and plotting the non-dimensional ratios 11jllm and Ex/Em
against the fibre volume fraction Vr and the fibre aspect ratio ~/d. In these figures, it is clear
that with the increase offibre off-axis angle 6, the values of the non-dimensional ratio llj11m
are increasing and those for E~/E~ are decreasing. When the .fibr~ off-axis angle reaches a
value between 40° to 60°, both curves pertaining to lljllm andE/Emchange their directions,
which demonstrate that for a fibre off-axis angle 6 within the range of40° to 60°, both the
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ratios TljTlm andE~/E~ reach their extreme values (maximum and minimum, respectively)
almost simultaneously.

TABLE 15.2 Selected material properties of Scotchply 1002 matrix epoxy and E-glass fibres at room
temperature (Adapted after Gibson and Plunkett 1976).

Material Properties Expoxy E-glass

Young's modulus, GPa 3.79 72.4

Shear modulus, GPa 1.38 30.3

Damping factor 0.015 0.0014

Shear damping factor 0.018 0.0014

Poisson's ratio, u 0.36 0.2

Specific Gravity, g 1.23 2.54

Figures 15.46 to 15.50, which are plotted by setting the fibre-aspect-ratio Ud at 5, 20,
40,80 and 100, respectively, present the non-dimensional ratios TljTlm andE~/E~ against the
fibre volume fraction Vf and the fibre off-axis angle 6. One could note that the value TljTlm
decreases monotonously as the fibre-aspect-ratio f/d increases and for f/d>15, the rate of
decrease in the value ofTljT'lm slows down until the fibre-aspect-ratio Ud reaches 20, wh~reby
the value ofTljTlm maintains a constant value afterwards. The non-dimensional ratioEx/Em
also increases sharply until the fibre-aspect-ratio f/d reaches a value ofabout 20. With the
fibre-aspect-ratio ranging from 20 to 60, the non-dimensional ratioE~/E~ increases slowly
with the increase of the fibre-aspect-ratio q/d and it appears to have a constant value from
Ud=60 upwards.

By setting the fibre volume fraction Vr at 50%,60% and 70%, the non-dimensional
ratios TljTlm andE~/E~ versus the fibre aspect ratio Ud and the fibre off-axis angle 6 could
be plotted as shown in Figures 15.51 to 15.53. In these figures, one could identify that with
the increase of the fibre volume fraction Vr, both the non-dimensional ratios TljTlm and
E~/E~ change almost linearly, with the values of TljTlm are monotonously decreasing and
those for E~/E~ are monotonously increasing.

It is apparent from the above mentioned results that among the three considered
independent variables, the fibre off-axis angle 6 has the most significant influence on the
damping and stiffiless offibre reinforced composites, e.g., Sun et al. (1985). The numerical
results obtained appear to have good agreement with the observations made by Gibson et al.
(1982), Sun et al. (1985), and Suarez et al. (1986).
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15.5.2. OPTIMIZATION

From the above numerical results, one can note that in order to increase the damping
property ofa discontinuous fibre reinforced composite, it is necessary to sacrifice the stiffness
of such material. The analysis of the trade-off between damping and stiffness has recently
gain remarkable attention from researchers and design engineers, particularly in aerospace and
automotive industries, due to the high-volume use of fibre composite materials in such
industries. Therefore, the simultaneous optimization of these two properties for the design
ofhigh performance fibre-reinforced composite structures is becoming remarkably important
in the realm ofthe development ofcomposite materials for applications involving both quasi­
static and dynamic loading.

In addition, as it is well recognized, one of the most important advantages of a fibre
reinforced composite material over its metallic counterparts is its light specific weight. The
latter property is particularly attractive to aerospace and automotive industries. Thus, it is
necessary to include this property in the dealt with optimization problem. Thus, three
objective functions become involved in the optimization problem of interest to the present
work, i.e., the maximization of both damping and stiffitess and, on the other hand,
minimization ofthe specific weight. Thus, the so-called "inverted utilityfunction method",
e.g., Rao (1984), appears to be suitable to deal with this multi objective optimization problem.

The Inverted Utility Function Method
In this method, a utility function Ui (fJ is defined for each objective function as

(15.44)

where ~ (X), the illl objective function, with a weighting factor Wi (i = I, 2, ...k), is to be
minimized. In the process of optimization, one inverts each utility function and attempt to
minimize or reduce the total undesirability. Thus, it follows that

_ k _I k ( I) k Ilk (I)U I=LUj =L - =L ---=L -ai -
i:1 j:1 Ui j:1 Wi ~(X) j:1 ~(X)

(15.45)

a. =
I

where the scalar weighting factor llj is defined by
k

L
i: 1
a. = I

I

The solution of the optimization problem is established by minimizing the function Ui -1 , as
expressed by (15.45), subject to the imposed constraints. The selection of scalar weighting
factor 8; would depend on the extent of importance of each objective function.
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Multivariable Non-linear Optimization
The utility functions of the dealt with objective functions are set as

u =w [~)1 1 11
m

u = w ( E~]2 2 •
Em

(15.46)

(15.47)

(15.48)u =-w [ W )3 3-Wm

whereW is the specific weight for the dealt with discontinuous fibre-reinforced composite,
which is defined in term of fibre volume fraction Vr as

W=WrVr+Wm(l-Vr) (15.49)

whereE~ and 11. are defined, respectively, by equations (15.41) and (15.43).
W f, Wm , E~ and 11mare set corresponding to the material properties of considered E­
glass/epoxy discontinuous fibre-reinforced composite as shown in Table 15.2.

Substituting equation (15.46) to (15.48) into equation (1 5.45), the total undesirability
of this design problem can be expressed as

(15.50)

In the presently dealt with optimization problem, both damping and stiffitess are
considered to be approximately of the same importance to the optimization problem in hand,
but, each is of a more significance than the specific weight. Accordingly, one may set the
associated-with weighting factors selectively as a1 = 0.513, ~ = 0.387, a3 = 0.1. For the
reasons stated early in this section, the constraints for this optimization problem may be set
as

0.5 S Vfs 0.7
I sUd s 100
0° s 6 s 90°

(15.51)
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Implementation ofNon-Linear Programming
Following the above presentation, the optimization of this design work becomes

Minimize U -I

Subject to 0.5:!O Vr:!O 0.7
I :!O Ud :!O 100
0 0 :!O 6:!O 90 0

(15.52)

This is a typical constrained non-linear optimization problem. In order to simplifY this
problem, one can adopt the so-called "mapping technique", often referred-to as the "variable
transformation technique" to deal with the above parametric constraints (e.g., Rao, 1984).
By using this technique, the constrained optimization problem could be solved by a non­
constrained optimization technique.

In the mapping technique, one assumes that there is a minimization problem f\X)
wherebyX T = [ XI ,"2, ... ,xj ] has the parametric constraints

(15.53)

wherej = 1,2,3, ... , n; i = 1,2,3, ... , m.

In this context, one can use the general mapping procedure (Rao, 1984) as

(15.54)

Therefore, the objective function f\X) changes to f\X', Y), whereby y T = [YI' Y2' ... , Yi] and
X· represents all the components of one variable vector X with the exception of x;.
Meanwhile ifm = n, f(X', Y) becomes f\Y); see Feng (1999).

Accordingly, the mapping procedure can be utilized on the above mentioned parametric
constraints, equation (15.52), as

6 - 90 0 sin2 Y- I

@/d = I + 99 sin2 Y2
Vr = 0.5 + 0.2 sin2 Y3

(15.55)

where y T =[y., Y2, Y)] is the mapping vector in the above procedure. Therefore, one can
convert this constrained non-linear optimization problem U -1(6,~/d,Vr), Eqn. (15.52), to a
non-constrained non-linear optimizationU -I (YI'Y2' Y3 ) and solve this problem by using a non-
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constrained optimization techniques for the purpose ofthe simplification of the analysis.

The "Simplex Method', see Rao (1984), seems to be suitable for this non-constrained
non-linear optimization problem with a relatively small number ofvariables. In the referred-to
method, the movement of the "Simpler' ofn+ 1 points in an n-dimensional space towards
an optimal point is achieved by using three operations known as "Reflection", "Contraction"
and "Expansion" techniques (e.g., Rao, 1984).

Following the algorithm of the "Simplex Method', one can implement (Feng, 1999) a
numerical scheme to solve this optimization problem (see Fig. 15.54 for the pertaining
flowchart).

With reference to the flowchart ofFig. 15.54, one is to set first the values ofa number
ofinvolved parameters, namely, the desired starting point, accuracy ofthe problem and probe
length. Such parameters are used to construct the initial "Simplex", as well as the
"Reflection", "Expansion" and "Contraction" coefficients. In this context, one sets the
starting point as yT =[0, 0, 0], the accuracy of the problem as ACCUR =0.001, the probe
length as PLE =0.1, the "Reflection" coefficient as A=1.0, the "Expansion" coefficient as
y = 2.0, the "Contraction" coefficient as B= 0.5 (e.g., Rao, 1984). The final result is given
out as: the optimal fibre off-axis angle a= 44.4°, the optimal fibre volume fraction Vf =
60.605 and the fibre aspect ratio Ud = 1.49.
These results have good agreement with the observations made by Sun et al. (1985) that for
small off-axis angles a(say a s 45°), 1'). becomes maximum in the whisker or micro-fibre
composites range (i.e., for very small ~ Id, say Ud s 5) and the stiffness E~ for micro-fibre an~
whisker composites is also relatively high. Therefore, in order to achieve high stiffness Ex
and damping 1')., micro-fibre and whisker composites appear to be the ideal candidates.

If yT are set as various starting points within a useful interval from [0, 0, 0] to [95,
95, 95], with the increments 0.5 or 5.0, and the same input parameters are used as in the
above case, one arrives at outputs as shown in Table 15.3. In this case, it is obvious that one
obtains multiple local minima, such as, for instance, the local minimum: 0.5827. For each
case of these local minima, the off-axis angle remains almost the same, i.e., approximately
43.75°, and the fibre volume fraction and the fibre-aspect-ratio change in opposite directions
and could be catalogued into two groups, i.e., (@/d '" 1.38, Vf ", 62%) and (Ud '" 85.09, Vr
'" 54%). It is obvious that this interesting observation gives more flexibility to the design of
high performance fibre-reinforced compositesby using, for instance, fibre-reinforcement with
either a relatively low fibre aspect ratio, i.e., ~/d '" 1.38 and a relatively high fibre volume
fraction, i.e., Vr ", 62%, or of a higher fibre aspect ratio, i.e., Ud '" 85.09 and a lower fibre
volume fraction, i.e., Vf .. 54%. Thus, in the presented case, one may conclude that
concluded from the above results that, when at the small fibre off-axis angle a '" 43.75 ° and
by approximately setting the fibre-aspect-ratio at ~/d '" 1.38 or@ Id '" 85.09, the corresponding
fibre volume fraction Vf reaches about 62%, or 54%, we could get the maximum damping
1')x' relatively high stiffnessE~ and relatively low weight W.
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Summary ofSection J5.5
Analytical predictions which were determined by the "Force-Balance Method'show that
damping and stiflhess are functions of fibre off-axis angle, fibre volume fraction and fibre­
aspect-ratio. In order to increase the damping ofthe fibre-composite, it may be necessary to
sacrifice the stiflhess, and vice versa.

The "Inverted Utility Functio11 Method' and "Simplex Method' were found to be suitable to
deal with the multi objective optimisation problem with relatively small number ofvariables.
The use ofthe"Variable Transformation Technique", Rao (1984), to convert the constrained
non-linear optimisation problem to a non-constrained one, makes such an optimisation much
easier to handle.

For a given E-glasslepoxy composite material, the results of optimization of damping,
stiffhess and specific weight show that, approximately at fibre off-axis angle 6 .. 43.750, by
setting fibre aspect ratio @I d '" 1.38 or@ I d '" 85.09, the corresponding fibre volume fraction
Vf reaches 62% or 54%, and one could obtain maximum damping, relatively high stiffitess
and relatively low specific weight for this class ofmaterials.

The existence of multiple local minima gives more flexibility to the design of high
performance discontinuous fibre-reinforced composites. That is, in the presented case, for
instance, both the micro-fibre or whisker composites (Ud '" 1.38) and the discontinuous fibre
reinforced composites with longer fibre (@ "'d 85.09) can be selected to satisfy the above
mentioned design criteria.

15.6. Study Problems

1. Comment, using an analytical proof, on the validity of the following statement: "On
the contrary to the case ofcontinuous fibre-composite systems, where the ratio of
compliance to breaking strength is invariant for a give11 fiber material; with
discontinuousjibre-systems, however, this ratio can be varied".

2. Following your answer to Problem 1 above, claritY, with the support of a
mathematical model the statement: "A variable ratio ofthe complia11ce to breaki11g
strength wouldgive more latihlde in the design ofvarious stroctural and mechanical
compone11ts USi11g composite materials".

3. What is meant by the "glass transition temperature T," ? How one would determine
it for a particular polymeric composite system. Discuss the effect of reinforcement­
discontinuity in a composite laminate on the pertaining value of T•.
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TABLE 15.3. OPtimization results for various startin2 ooints yT (Fen , 1999)-

Starting point Fibre off-axis Fibre aspect Fibre volume Local minima
angle 6° ratio f/d fraction Vf %

[0,0,0] 44.4 1.49 60.6 0.5833

[0.5,0.5,0.5] 43.9 83.6 54.2 0.5827

[1.0, 1.0, 1.0] 43.9 66.7 54.6 0.5828

[2.5,2.5,2.5] 44.1 1.46 60.8 0.5832

[5.0, 5.0, 5.0] 43.9 97.4 54.3 0.5827

[7.5, 7.5, 7.5] 44.3 38.2 55.2 0.583

[10, 10, 10] 43.7 49.7 54.3 0.5829

[15, 15, 15] 44 1.47 60.8 0.5832

[20,20,20] 43.7 100 54.1 0.5827

[25,25,25] 43 1.05 65 0.5837

[30,30,30] 43.7 99.8 54.2 0.5827

[35,35,35] 43.5 97 54 0.5827

[40,40,40] 44.2 1.44 60.6 0.5832

[45,45,45] 43.8 99.1 54 0.5827

[50,50,50] 43.7 57.9 54.8 0.5828

[55, 55, 55] 43.7 72.6 53.8 0.5828

[60,60,60] 43.3 97.2 53.6 0.5827

[65,65,65] 43.4 95.3 53.8 0.5827

[70,70, 70] 43.7 96.4 54.2 0.5827

[75, 75, 75] 43.4 99.1 53.9 0.5827

[80,80,80] 44.8 88 54.2 0.5827

[85,85,85] 43.8 75.1 54.1 0.5827

[90,90,90] 43.5 84.8 54.1 0.5827

[95,95,95] 43.2 89.4 53.7 0.5827
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Figure /5.4/. Non~ional ratios 'lJ'l.. and E" 'IE,.' vs. fibre volume fraction Jj and
fibre-aspect-ratio lid. Off-axis angle e is set set to be 0°. Reprinted with pennission from
Feng (1999); see Haddad and Feng (1999).
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Figure 15.42. Non~mensional ratios '1.I'l.. and E. 'IE.' vs. fibre volume fraction Ij and
fibre-aspect-ratio lid. OfT-axis angle a is set set to be 40°. Reprinted with permission from
Feng (1999); see Haddad and Feng (1999).
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Figure 15.43. Non-dimensional ratios '1.I'l.. and E" 'IE",' vs. fibre volume fraction Jj and
fibre-aspecl-ratio Vd. Off-axis angle e is set set to be 60°. Reprinted with pennission from
Feng (1999); see Haddad and Feng (1999).
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Figure J5.44. Non..<fimensional ratios ".1'1.. and E. 'IE,.' vs. fibre volume fraction ~ and
fibre-aspect-ratio lid. OO-axis angle 6 is set sello be 80·. Reprinted with permission from
Feng (1999); see Haddad and Feng (1999).



www.manaraa.com

363

9 = 90-

00

00

lId
0.50

Figure 15.45. Non-dimensionaI ratios '1./'l.. and E. 'IE,.' vs. fibre volume fraction J'f and
fibre-aspect-ratio Jld. Off-axis angle a is set set to be 90". Reprinted with permission from
Feng (1999); see Haddad and Feng (1999).

o.

'l../TJ.
O.

o.



www.manaraa.com

364

lid S
E'IE'A •

12

10

I

6

..

'1,/'1.
1.2

1.0

0.1

0,6

0.4

Figure /5.46, Non-dimensional ratios,!. I,!.. and E. 'IE..' VS, fibre volume fraction ~I

and off-axis angle 6. Fibre-aspect-ratio lid is set to be S. Reprinted with permission from
Feng (1999); see Haddad and Feng (1999),
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Figure J5.47. Non-dimensional ratios ".1"", and E. 'IE",' vs. fibre volume fraction J.f
and off-axis angle a. Fibre-aspect-ratio lid is set to be 20. Reprinted with pennission from
Feng (1999); see Haddad and Feng (1999).
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Figure J5.48. Non.<fimensional ratios '1./'1.. and E. 'IE..' \IS. fibre volume fraction V,
and off-axis angle 8. Fibre-aspect-ratio lid is set to be 40. Reprinted with pennission from
Feng (1999); see Haddad and Feng (1999).
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Figure 15.49. Non-dimensional ratios 'l.I'l.. and E;IE.: vs. fibre volume fraction V,
and off-axis angle O. Fibre-aspect-ratio lid is set to be 80. Reprinted with permission from
Feng (1999); see Haddad and Feng (1999).
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Figure J5.50. Non-dimensional ratios '1.1'1.. and E. 'IE..' vs. fibre volume fraction 1'/
and off-axis angle 9. Fibre-aspect-ratio lid is set to be 100. Reprinted with permission
from Feng (1999); see Haddad and Feng (1999).
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Figure J5.5J. Non-dimensional ratios 'l.I'l.. and E. 'IE..' vs. fibre-aspect-ratio lid and
off-axis angle e. Fibre volume fraction ~is set to be 50%. Reprinted with permission from
Feng (1999); see Haddad and Feng (1999).

0.2

0.4

0.8

0.6

11./fl.
1.2

1.0



www.manaraa.com

370

E 'IE I• •
12

o 0
Figure /5.52. Non-dimensional ratios 'Ix 1,1.. and Ex 'IE..' I'S. fibre-aspect. ratio lid and
off-axis angle e. Fibre volume fraction Ij is set to be 60%. Reprinted with permission from
Feng (1999); see Haddad and Feng (1999).
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Figure /5.53. Non-dimensional ratios '1zl'1. and Ez'IE.: vs. fibre-aspect-ratio lid and
off-axis angle 8. Fibre volume fraction Jjis set to be 70%. Reprinted with permission from
Feng (1999); see Haddad and Feng (1999).
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INPUT
ACCUR the Accuracy
K the Probe Length

A a Reflection Coefficient
Y an Expansion Coefficient
B a Contraction Coefficient

INITIALIZAliON
X(I.J) a Initial Point

S(I.J) Coordinate Directions
EConveraence Criteria
1=1.2.3 N-I.N
J. 1.2.3•......•N-I.N

IM=I

Construct starting simplex by
X(I+I.J)=X(I.J) + K·S(I.J)
Evaluate F at each vertices

Determine XO(J). XH(J).XL(J) and
their conesponding FO. FH. FL and
FM Determine XO(J). XH(J).

Find XR(J) by reflection
Evaluate FR = F(XR(J»

XH(J) • XC(J)

Figure 15.54. Computer program flowchart of"Simplex Optimization Method'. Reprinled
witb permission from Feng (1999); see Haddad and Feng (1999).
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CHAPTER 16

THE STOCHASTIC MICROMECHANICAL APPROACH
TO THE RESPONSE HEHAVIOUR OF ENGINEERING MATERIALS

16.1. Introduction

In the past several decades, the micromechanical approach has been recognized as a
promising tool for the description of the response behaviour of engineering materials with the
inclusion ofthe so-called "local' or "microstructural' effects. The microstructure of a class
of such materials, however, is discrete in the sense of being heterogeneous and/or
discontinuous. In view of this fact, the so-called "deterministic micromechanics", that are
based on the concepts of continuum mechanics, could no longer be accepted for the
interpretation of the experimental results concerning the behaviour of discrete materials. It
has been, therefore, increasingly appreciated that a more appropriate representation of
discrete materials would only be achieved by including the random characteristics of the real
microstructure. Further, the response behaviour of such microstructure is often both time- and
loading history-dependent. Thus, the pertaining deformation process and its space- and time­
evolutions are expected to be stochastic in character. In this context, the establishment of the
connection between the response behaviour of the individual elements of the microstructure,
their interactions, and the observable macroscopic behaviour would be an essential
requirement. The fulfilment of the latter seems possible (Axelrad, 1993, and Axelrad and
Haddad, 1998) by the introduction ofthe principles of set theory, together with the concepts
of measure theory and topology. Thus, in the stochastic micromechanical formulations,
continuum mechanics concepts are generally replaced by considerations ofmicrostructural
response variables in the form ofdiscrete statistical functions. The latter are established within
well-defined "measuring scales" defining the levels of observation into the material system.

In order to describe the mechanical response of the nonhomogeneous material system
from a microstructural point ofview, it is necessary to consider the response of the individual
structural elements which on a local scale could differ considerably from an average response,
which would be arrived at by the phenomenological continuum formulations. Such local
deviations in the response behaviour, which are usually neglected within the continuum
mechanics approach, are directly related to basic properties of the nonhomogeneous material
system. Accordingly, the stochastic microstructural analysis begins with a definition of the
"structural element' ofthe particular material system under consideration and deals with the
formulation of its response behaviour in a probabilistic sense.

In order to extend the formulation, pertaining to the response behaviour of the

373
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structural element, to the practical case of a macroscopic material system, the stochastic
micromechanical approach makes use of "intermediate quantities" arising from the
consideration of the existence of a statistical ensemble of structural elements within an
intermediate domain of the material specimen. Further, it is equally important to find a
connection between the microscopic and the macroscopic response formulations. Thus, the
analysis aims at the formulation ofa set of"governing response equations" for the structured
material system that, in contrast to the classical continuum mechanics formulations, are based
on the concepts of statistical theory and probabilistic micromechanics; see Axelrad (1984,
1993), Haddad (1990, 1995), and Axelrad and Haddad (1998). In this context, it has been
found useful to employ operational representation of the various relations. Hence, the notion
ofa "Material Operator" characteristic of the response behaviour of an intermediate domain
of the material is introduced. This material operator provides the connection between the
stress field and the occurring deformations within the intermediate domain, of the material
system, under consideration. The "Material Operator" would generally contain in its
argument those stochastic variables or functions of such variables distinctive of the response
behaviour of the microstructure within the intermediate domain. In a very reduced and
simplified form, such an operator may be expressed as

where ur and upr are random material operators expressing the response characteristics of
elements of the microstructure, UK is a function ofone or more geometrical parameters, PI
and P2 are geometrical probabilities, e is the microstrain and t is the time parameter. Other
variables that may be included in the argument of the material operator r(e, t) above could
include, for instance, the temperature T and relative humidity <1>, among others. An
approximate classification ofstructured solids that could be treated within the context of the
presented stochastic micromechanical approach is presented in Table 16.1. Micrographs of
the microstructures of a number of materials representative of some of the classes given in
Table 16.1 are shown, with various magnifications, in Figures 16.1 to 16.6. Meanwhile, a
comparison between some ofthe basic concepts of the stochastic micromechanical approach
adopted here and the corresponding postulates of the conventional continuum mechanics
approach is shown in Table 16.2.

16.2. Probabilistic Micromechanical Response

One of the main concepts of "stochastic micromechanics" (Axelrad, 1993) is the use of
"three measuring scales'. The smallest scale is identifiable with a "structural element" of the
actual microstructure. The next scale is intermediate between the level of the structural
element and the macroscopic scale ofthe material system. It is termed "meso". The third and
largest scale is identifiable with the macroscopic material body. It is referred-to as
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"macroscopic". The concept of "three measuring scales" in stochastic micromechanics is
dealt with in more details below.

TABLE 16.1. Some classes of structured engineering materials that could be treated within the context of
the stochastic micromechanical approach (after Axelrad, 1978)

A

Polycrysattine
solids

High
temperature
solids

Directional
solidified
metals

B

Composite
Materials

Two-phase
materials

c
Fibrous
systems

Paper

Textiles

D

Polymeric
systems

Synthetic
fibrous
structures

E

Particulate
materials

Soils

Dispersed
particle
systems

Figure 16.1. TEM-micrograph (X5700) of Silicon-Steel. Reprinted from Axelrad, D. R
(1993) Stochastic Mechanics ofDiscrete Media, Springer-Verlag Berlin Heidelberg, pp.
64, with kind permission from Springer-Verlag Berlin Heidelberg.
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Figure 16.2. TEM-micrograph (XlSOO) ofTungsten-eobalt compound. Reprinted from
Axelrad, D. R. (1993) Stochastic Mechanics o/Discrete Media, Springer-Verlag Berlin
Heidelberg, pp. 64, with kind permission from Springer-Verlag Berlin Heidelberg.

Figure 16.3. SEM-micrograph (X1700) ofZirconium-Alloy. Reprinted from Axelrad, D.
R. (1993) Stochastic Mechanics ofDiscrete Media, Springer-Verlag Berlin Heidelberg, pp.
65, with kind permission from Springer-Verlag Berlin Heidelberg.
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Figure /6.4. SEM-micrograph (X170) of Sulphite-paper (Fibrous structure). Reprinted
from Axelrad, D. R. (1993) Stochastic Mechanics ofDiscrete Media, Springer-Verlag
Berlin Heidelberg, pp. 6S, with kind permission from Springer-Verlag Berlin Heidelberg.

Figure /6.5. SEM-micrograph (X4800) ofa Kaolin-Water compound (Soil). Reprinted
from Axelrad, D. R. (1993) Stochastic Mechanics ofDiscrete Media, Springer-Verlag
Berlin Heidelberg, pp. 66, with kind permission from Springer-Verlag Berlin Heidelberg.
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Figure 16.6. SEM-micrograph (X2000) of AI-Glycol compound. Reprinted from Axelrad,
D. R (1993) StochasticMechanics ofDiscrete Media, Springer-Verlag Berlin Heidelberg,
pp. 66, with kind permission from Springer-Verlag Berlin Heidelberg.

TABLE 16.2. Acomparison between basic concepts of the probabilistic micromechanical
approach and the corresponding concepts of classical continuum mechanics.

Classical
Continuum
Mechanics

Material System Continuous

Local description Mathematical
point

Stress and Continuous
deformation

Analytical approach • Deterministic
- Constitutive
theory

16.2.1. A STRUCTURAL ELEMENT

Stochastic Micromechanics

Discrete

Structural element

Discontinuous

- Stochastic
• Operational formalism of the
response ofa structured material
system

A structural element (IC) is defined as the smallest part of the medium that represents the
mechanical and physical characteristics ofthe microstructure at the "micro" level. In a large
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class of structured material systems, this element is chosen arbitrarily to represent an
individual micrelement as well as the binding interaction within the boundary between two
matching microelements. Figure 16.7 illustrates the concept of a "structural element" for
different classes of structured solids.

Throughout this Chapter, a superscipt (K) to the left of the symbol will refer, in
general, to a structural element. The quantities referring to an individual microelement is
denoted by a superscript "a" while those referring to the bonding interaction within the
boundary between two matching adjoining microelements a and P are designated by
superscripts ap.

Microelement "a"
In the stochastic micromechanical approach, the continuum approach is maintained for the
formulation of the response behaviour of a single microelement. Thus, it is understood that
the effects of the rnicroelement's substructural mechanisms, such as dislocations and other
lattice imperfections, are not considered at this stage of presentation. Further development
ofthe analysis, however, may include the effects of such mechanisms. Hence, it is considered
in the present analysis that the overall response of the microelement is of greater significance
to the overall response of the macroscopic material system.

16.2.2. AN INTERMEDIATE SCALE"MESODOMAIN"

The next scale is a "meso" ofthe material body and is associated with a countable set (finite)
of structural elements K; (K = I, ... N) where N is large enough to comply with the low of
large numbers of probability theory. The "meso" scale is of utmost significance since it
defines a set ofK; (K = 1, ... N) where all the statistics of the physical, geometric and field
quantities governing the behaviour of the elements of the microstructure are assumed to be
independent of position or index number. The various dependence relations and limiting
procedures available to distinguish between "independent" and "dependent" random variables
have been discussed by Axelrad (1993).

6.2.3. THE MACROSCOPIC SCALE

The third and largest scale is identifiable with the macroscopic material body and is defined
as the union of disjoint mesodomains. It is the mathematical manifold representing the
macroscopic body ofthe medium. It has to be recognized, however, that the considerations
also involve the notion of "mean values" for an ensemble of structural elements for which
experimental observations can be easily made.

The scope ofthe stochastic micormechanical approach to the mechanical response of
a randomly structured material system (of mutually interacting microelements) is
demonstrated in Figure 16.8.
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Figure J6.7. The concept ofa "structural element' for different classes of structured solids:
(a) Polycrystalline solid, and (b) Fibrous structure.
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Figure 16.8. Scope of the stochastic micromechanical approach to the response
behaviour ofa randomly structured material system.
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In the following, the stochastic micromechanical approach will be demonstrated for
the case ofpolycrystalline solid. Case studies concerning the application of this approach to
fibrous structures can be found in Haddad (1995). The apptoach has been also demonstrated
by the author for the case ofcomposite systems (see Haddad, 1986b, and Haddad and Tanary,
1989).

16.3. The Stochastic Micromechanical Approach to the Response Behaviour of
Polycrystalline Solids

16.3.1. STEADY-STATE RESPONSE

Structural Element
Microelement (a). The strain increment, in a continuous "elasoplastic" microelement, may
be expressed as the sum ofelastic and plastic increments as

AU. e.. = AU. e~~) + AU.e9')
IJ IJ IJ (16.1)

Introducing, with reference to the microelement's local coordinate frame, Fig. 16.9, a micro­
stress"~ in the Cauchy sense, one can write the elastic response equation in an incremental
form as

AU.r: -liE All (e)
L.1 'oij - ijkl L.1 ekl

where U elj k I is the elastic tensor modulus of the "continuous" microelement (a ).

The plastic strain increment is assumed to be given by the flow rule as

(16.2)

(16.3)

in which / is the yield function and AA is a scalar function. Assuming that the yield function
is to be given by the plastic work WCP), i.e.

(16.4)
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then, the scalar function is calculated by (Kitagawa and Tomita, 1973)

where

F =~ and
dW<P) (16.5)

From equations (16.1), (16.2) and (16.5), it follows that

Assume the linear incremental constitutive equation

(16.6)

(16.7)

whereby the material operator A;j k I can be written, in view of equations (16.1) - (16.7), as

Ajkl = Eijkl - Tuw Tpq EpqkI Eijuw / (F . ~mn + Emnn Tn - Rmn) Tm n (16.8)

From the above, Eqn. (16.8) is valid for any arbitrary yield function f. Assuming, for
instance, the von Mises yield function

1 .. 1 2
f = - ~.. ~ .. =-~2 IJ IJ 3

then, Eqn. (16.8) reduces to

•.. 2 - .
Aijkl = Eijkl - 2 ~ ~ij ~ij ~kl / 3" ~2 (F / (2 ~ + 1» (16.9)
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in which 11 is the shear modulus. Let the operator Ljj k I represent the second term on the
right-hand side ofEqn (16.9); hence, in terms of this operator, one can write, with reference
to Eqn (16.7), that

(16.10)

where L jjkl is seen as a material operator representing the plastic response of the
microelement. Meantime, the response behaviour of the microelement is expressed in terms
of the incremental microdeformation as

(16.11)

where the material operator "rijs takes, in view of(l6.10), the form

(16.12)

Inter-elemental Boundary ..«P"
In any mathematical approach to the response behaviour ofmaterial systems that would be
based explicity on microstructural considerations, it is ofutmost importance to include in the
formulation the internal surface effects caused by existing inter-elemental boundaries. In this
regard, several models have been proposed in the literature to assess the intercrystal energies
as associated with the possible inter-elemental boundary topology.

In the case ofpolycrystals, for instance, Bollmann (1970) defined grain boundaries in
terms of'coincidence lattices' obtained from the interpretation of two adjoining grains. This
led to Bollmann's 'low misfit angle O.-Iattice' and 'high misfit angle 02-lattice'theories.
The two latter concepts, introduced as the sum of all positions of 'best fit'. represent a
description of the possible boundaries between two idealized crystals ofgiven structure and
crystallographic orientation.

Within the present analysis, one seeks an expression incorporating the mechanical
response ofthe inter-elemental boundary separating two neighbouring microelements a and
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p. In this context, the interaction between a pair ofatoms "q and Pq, on the matching surfaces
of IX and p, separated by a distance vector ~ is assumed to be given by a 'pair potential
function' defined by (Morse, 1929)

D ( I d I) =Do [ exp { - 2b ( I ~ - ~ I )}
- 2 exp { - b ( I ~ - ~ I )} ]; (d = ~ -~)

(16.13)

in which Do is the equilibrium value of the potential, ~ is the equilibrium separation vector
corresponding to Do and b is a material constant. The values of the above parameters are
given in Table 16.3 for a number ofmaterial systems.

TABLE 16.3. Potential function parameters

Copper Aluminium Gold

Do (eV) 0-21667 0-1400 0-1800

b(A -I) 2-23349 2-27775 2-96998

I~ I (A) 2-54756 2-84780 2-874 13

In a manner similar to the operational formulation of the response of an individual
microelement, Eqn. (16.11), one can express the bonding response in an operational form.
For this reason, a transform operator "pr for the bonding interaction is introduced such that

liP r = IIPr IIPd
"ij ijk k (16.14)

where up d k (t) is now the generalized relative displacement between the two matching
microelements a and p. This relative displacement may be expressed, following Gel'fand
and Vilenkin's generalized functions concepts (1964), as

(16.15)
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in which the symbol /\ indicates a discrete value of the parameter and t> is the three­
dimensional 'Dirac-delta' function.

With reference to (16.13) and (16.14), the expression forthe operator up r jjk of(16.14) may
be approximated by

-2b 2 Do n I
lXP r';;k (t) = lXP g. llP v. 11,.. g -
, llP I J ka

(16.16)

where II II a is the area per bond, and II II vJ are the components of the unit nonnal to the grain
boundary (ap).

Transition to the Macroscopic Response Behaviour
Following the concepts of the micromechanical theory of structured media (Axelrad,1984,
1993, and Axelrad and Haddad, 1998), atl microscopic field quantities within the intennediate
domain are considered to be stochastic functions of primitive random variables. Thus, the
components ofthe microstress, for instance, are seen as stochastic functions ~~(r,t) that can
be regarded as a family ofrandom variables ~~(r) within the intermediate domain depending
on the time parameter t, or a family of curves <t(t) depending on the structural element
position vector ~r.

The basic kinematic quantitIes pertammg to the defonnation of the material
microstructure are considered as follows:

The microelement deformation vector,

(I d: (I d
j

i =1,2,3

and the interfacial bonding defonnation within the inter-elemental boundary,

Within an intermediate domain of the medium, referred to as a "mesodomain" (Axelrad, 1984,
1993), the above kinematic quantities are considered to be stochastic functions of primitive
random variables.
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The basic kinematic parameters, at any particular time, which describe the changes that have
taken place in the structural element, may be seen as the outcome of (K) due to the
deformation process and is designated by

where 11 = 6 represents the number ofbasic kinematic parameters above. The entire set of
possible outcomes define the sample space E ' i. e. Ie 11 € E .
It is understood, however, that due to experimental limitations, k 11 cannot be determined in
an exact fashion. This, then, calls for a "parameter celt' type of formulation which is
common in statistical mechanics.

Thus, the event 8 is taken to be the experimentally specified parameter cell in ~, such that

where t!l11 is the experimental range of the measurement of the kinematic parameter. Thus,
during the deformation process, the probability of the kinematic parameter being in the event
8 is a probability measure that changes with time and may be designated by {8}. Thus, one
could identify this probability measure by arbitrarily setting

where Q indicates a particular value in the event 8.

Now, consider the basic kinematic random variable (vector) ~ (s) for some fixed time (s);
the most convenient definition of such variable may be provided by the choice of the image
set

i.e., the value of the random variable at this particular time s is the outcome 11. Furthermore,
the probabilistic distribution for the random variable is established by the condition that the
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set

is an event for all values of0 E ~.

Now, the basic kinematic stochastic process d, can be considered, as an extension of the
foregoing, as a family of random variables {d, (s); s, t > O}, where its probability distribution
function can be read as

16.3.2. STOCHASTIC APPROACH TO THE INTERNAL DAMAGE IN A
STRUCTURED SOLID

One of the main objectives of the mechanics of deformable solids is the formulation of the
ductile fracture process in materials. In metals, for instance, the ductile fracture phenomenon
is generally associated with the nucleation ofmicro voids, their growth and interlinking in the
material specimen (Rosenfield, 1968, and McClintock, 1968). Although significant research
efforts have been made in recent years towards understanding the controlling factors involved,
no comprehensive ductile fracture criterion has yet been reached. This is due primarily to the
great theoretical complexity of the problem and the difficulty in carrying out definitive
experiments (Rosenfield, 1968, and Sih, 1983).

Microscopic voids usually form at sites of second phase particles such as inclusions,
precipitates and dispersions. There is, also, the possibility that such voids may form at highly
strained regions in the specimen regardless of the presence of second phase particles (Rogers,
1971). With the evolution of the fracture process, such voids grow and join together into
larger voids or cracks. The latter becomes, then, the source of localized microstresses and
microdeformation bands which spread in the microstructure in directions determined by the
boundary conditions of the macroscopic specimen. As a result, additional micro voids may
also form and they, too, would grow and coalesce leading to additional cracks in the
specimen. Such a process would, then, repeat itself pending on the rate of energy transfer in
the microstructure until the final collapse of the material.

Void nucleation at the sites of included particles is attributed to a large extent to the
strength of the particle, the particle-matrix interfacial bonding, as well as the mechanism of
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load transfer between the matrix and the particle during the deformation process. When the
particles are weak or brittle, void nucleation occurs by the shattering of the inclusions at very
small strains (e.g., Nemat-Nasser, 1977). On the other hand, when the particles are strong,
but weakly bounded to the matrix, nucleation would occur by particle-matrix bond
decohesion. Equivalently, a case when the particle is not bonded to the matrix may
demonstrate a pre-existing void. When the metal contains, however, strong particles which
are strongly bonded to the matrix, void formation is retarded and the material demonstrates
improved ductility (e.g., Nemat-Nasser, 1977, and Argon and Safoglu, 1975).

While void formation is an essential part of the ductile fracture process, the most
influential factors leading to the final failure ofthe macroscopic specimen are void growth and
void coalescence within the highly strained matrix between the voids. In effect, such events
occur in a rather cooperative manner: the nucleation of voids due to particle-matrix bond
decohesion concentrates the strain in narrow bands emanating from the voids (e.g.,
Rosenfield, 1968), while bands impinging on particles cause holes to form around these
particles (see Rosenfield, 1968, and Ashby, 1966). Either of such events may occur first
commencing the process ofductile fracture. Further, during the fracture process, the particles
may block the path ofthe deformation lines within the matrix, hence, resulting in large stress
concentration. On the other hand, these stresses could be partially relieved by void formation.
However, if the metal is of high ductility, the void may not grow immediately into a crack,
but is blunted by local plastic flow (Rosenfield, 1968). In this regard, Bluhm and Morrissey
(1966) pointed out that hole formation and growth are usually gradual, but, hole coalescence
is rapid and catastrophic. Once holes begin to join together, they are very rapidly converted
into a crack which may transverse the cross-section of the material specimen in short time.

The conventional approach to the formulation ofthe fracture process in ductile solids
is based on continuum and 'modified continuum models which usually ignore the
nondeterministic influence ofmicroscopic events such as those referred to above. Examples
of such models are due to McClintock (1968), Hult and McClintock (1956), Huh (1957),
Rice and Tracey (1969), among others. These models imply, within the restrictions of
continuum mechanics, that all the basic quantities involved in the fracture process are con­
tinuous variables or functions of such variables. Due to the randomness of events leading to
ductile fracture, the field quantities fail to be continuous particularly at the evolved boundaries
within the specimen. Hence, it becomes necessary to consider such local events as an integral
part ofthe problem. In this context, the need for a probabilistic approach to the problem, that
accounts for the random nature of the phenomenon, has been discussed frequently in the
literature (e.g., Haddad, 1985a).
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In the following presentation, a probabilistic, microstructural approach to the
formulation ofthe fracture process in a ductile solid is introduced. Following the concepts of
the stochastic micromechanical theory, as introduced earlier in this Chapter, the material
system is regarded as heterogeneous medium of actual microstructural elements. These
elements may exhibit random geometric and physical characteristics and are further disturbed
by a random distribution of second phase particles, Fig. 16.9. The latter are, in general, ir­
regular in size, shape, orientation as well as interspacing. Hence, in the stochastic
micromechanical approach, the mechanics of the discrete microstructure introduce the rel­
evant field quantities as random variables or functions of such variables and their correspond­
ing distribution functions. Further, the evolution of the internal events in the microstructure
and their interaction effects are considered in this approach to be time-dependent. Hence, as
introduced earlier, it appears appropriate to consider the accompanying evolution process as
a stochastic process (e.g., Axelrad, 1984, Provan, 1971 and Haddad, 1983).

For the simplification of the analysis, it is assumed in the present model that the
included particles are of sufficient strength so that they would not break during the
deformation process. Accordingly, void formation at the particle-matrix interface is seen,
rather, to play the prominent role in the initiation of the fracture process in the specimen.
Here, the transfer of microstress between the matrix and the particle is considered to be
carried out through an interfacial binding mechanism. Hence, from a micromechanical point
ofview, the nucleation ofa microvoid at the particle-matrix interface is considered to occur
when the associated binding stress satisfies the criterion of a maximum binding displacement
value corresponding to the cut-off of the binding potential. The growth of a resulting
microvoid is, then, assumed to follow a (transgranular' random walk, of the discrete Markov
type (see Bharucha Reid, 1960). The latter is associated with the build-up of strain in the
matrix surrounding the void (see McClintock, 1958, and Haddad and Sowerby, 1977). Two
probabilities of absorption are involved here, i.e., at the structural element boundary and at
infinity. As the crack reaches the boundary between two neighboring elements (grains), an
inter-elemental (intergranular) fracture process may set up. Thus, a time-dependent, non­
homogeneous intergranular fracture process is examined in relation to the intensities of
transformations within the grain boundary.

A Structural Element
As defined in the foregoing, a structural element of the medium is defined as the smallest
region of the microstructure that represents the mechanical and physical properties at the
microlevel. In the case of a polycrystalline material, this element is chosen to represent an
individual grain (ex), as well as the grain boundary between two matching grains (ex&P). To
model the ductile fracture process involved, one assumes that there exists the probability that
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the microelement is disturbed by the presence of second phase particles within the grain.
Following our presentation above, a superscript "a" on the left of the symbol will refer, in
general, to the individual grain within the structural element (K). A distinction is made,
however, between the matrix within the grain and the particle that may be present in the grain.
Hence, the quantities referring to the former will be designated by "m", while those identifying
the particle will be designated by "i". The grain boundary between two matching grains a and
p is referred to by "ap", as introduced earlier.

UNDEFORMED

Inclusion I

DEFORMED

Z3 er (1=1,2,3)
Figure /6.9. A structural element (x). Reprinted from Haddad, Y. M. (1986) A stochastic
approach to the internal damage in a structured solid, Theoretical and Applied Fracture
Mechanics 6, 175-85, with kind pennission from Elsevier Science Publishers B.V. (North­
Holand).

For the description ofthe deformation kinematics ofa structural element (K), it is con­
venient, as shown in Fig. 16.9, to use two local Cartesian frames of reference, i.e.,

IIYk (k = 1,2,3)attached to the center ofthe grain and iXk (i = 1,2, 3) that can be used to
describe the orientation ofthe particle "i" of "a". These coordinate frames are to express the
local motion of the microstructure relative to an external Cartesian frame l,(1 = 1,2,3).
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Particle-Matrix Interface. In any microstructural approach to the formulation of the fracture
process in a ductile solid, it is of utmost importance to include in the analysis the effect of
interfacial bonding between the second phase particles and the matrix material within the
specimen. Due to the complexity of the interfacial conditions of the two components, there
could be significant physical difficulties that would make any direct attempt on the problem
rather impossible. One may, however, advance the argument that two types ofbonding may
be responsible for the strength ofthe particle-matrix interface, i.e., chemical and the so-called
physical (or fiietional) bonding. The first is essentially determined by the compatibility of the
atomic structure ofthe two materials to form a particular type ofbonding. Such compatibility
may be translated in terms of the type ofmatching atoms that might be available to form the
bond, interfacial energy and topology, among other factors. On the other hand, frictional
bonding is primarily due to the contact forces that may develop between the two materials
during metal forming and subsequent heat treatment operations. It is also possible that the
products ofchemical reaction between second phase particles and the matrix may enhance or
impair the bonding between the two components.

With reference to Fig. J6. J0, the distance vector Ii between, for example, two
matching points mq and i q of the matrix and the particle i, respectively, is considered to
be the basic kinematic parameter ofan interfacial bonding. The counterpart of this vector in
the deformed state is denoted by ~ and the microdeformation in the bond, at time t, can thus
be read as

d(t)=o(t)-Ii (16.17)

In case of chemical bonding, for instance, between matching points of the particle and the
matrix, a 'pair potential form appears to be most suitable for the description of the binding
interaction. One of the usual forms of such a potential is represented by 'Morse function' ,
presented earlier by (J6.13).

Based on the bonding potential form of(J6.13) , an operational response relation for
the particle matrix bonding interaction can be expressed, as demonstrated earlier in this
Chapter (see, also, Haddad, 1985b) as

(16.18)



www.manaraa.com

393

In the response equation B~u(t) is the matrix-particle bonding microstress at time
t, Br

UK
is the pertaining material operator which takes a form similar to (16.16), i.e.,

(16.19)

where mi a is the interfacial bond area, mi nJ is the unit normal to the interface at the point
in question and eK is a unit base vector associated with the external coordinate frame, Fig.
16.10.

The particle-matrix interfacial stress B;(t), Eqn. (16.18), may be also related to the
macroscopic stress on the specimen as established by Haddad (1986). Hence, in view of the
latter reference, one can write that

B B -IdK (t) = r UK (t) 0u(t) (16.20)

in which (t) is a probabilistic, time-dependent function expressed in terms of the geometrical
characteristics and the orientation of the local microstructure (see Haddad,1986), and 0u is
the macroscopic stress. Equation (16.20) establishes the "criterion ojmicrovoid initiation"
at the particle-matrix interface due to an interfacial bond failure.The latter is seen to
correspond to the value of I Bd ( t) I~ I Bd Imax' i.e., at the cut-offof the binding potential.
In view of equations (16.19) and (16.20), the position of the interfacial bond under
consideration is determined by the unit normal min. to the surface of the particle i whose
orientation is determined by (igk • e t ), Fig. 16.10. J

Following the above, a debonding process along the particle-matrix interface
would, in tum, create a debonded (free) zone at the site of the particle. In the present model,
it is assumed that the free zone is one which would initiate a "transgranular" crack
propagation within the grain.

Growth oja Transgranular Crack
In the dealt with model, the growth of a transgranular crack is thought to be consisting ofa
series ofsteps (McClintock, 1958 and Haddad and Sowerby, 1977). First, the local stress is
increased until a point of incipient fracture is reached in the matrix material surrounding the
void. Fracture then occurs for an incremental distance during which time the redistribution
of stress in the neighborhood of the crack will cause a further increase in the total
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accumulated strain there. If this increased strain due to the redistribution of the stress is not
enough to leave the local matrix in a condition to satisfy the fracture criterion, further growth
will not occur until the local stress is increased. The process of increasing the applied stress
and then cracking with associated straining and redistribution of stress is repeated
stochastically until a stage is reached in which there is enough strain to satisfy the fracture
instability criterion. Under these conditions, no further increase in the local stress might be
required and the crack will become unstable in growth until it reaches an absorbing barrier.
The latter is assumed, in the present analysis, to be the grain boundary ahead the direction of
crack growth.

In view ofthe above, the growth ofa nucleated fissure within the grain is assumed to
follow a random walk ofa finite set of states X= 0, 1, .... , i, .... , 4> where the states 0 and 4>
are seen as absorbing barriers representing, respectively, the nucleation site of the fissure and

UNDEFORMED

_,11",2,3)

(a)
DEFORMED

Figure /6. / O. Particle-matrix interface. Reprinted from Haddad, Y, M. (1986) Astochastic
approach to the internal damage in a structured solid, Theoretical and Applied Fracture
Mechanics 6, 175-85, with kind permission from Elsevier Science Publishers B.V. (North­
Holand).
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the grain boundary ahead of the crack tip as shown in Fig. 16.11. In this figure, the state i is
identified by the site of the crack tip as designated by the position vector r (i, t). In this con­
text, two probabilities p and q are introduced:

- the probability, independent ofthe position, that the crack tip will move one
step from position i to i + 1.
- the probability that the crack tip will move, independent of the position from
position i to i-I.

With the understanding that p + q = 1.

With reference to (McClintock, 1958, and Haddad and Sowerby, 1977), one may
express the probability of growth, p, as follows

p =p{( ~) dc - ( oe) dc ~ (~) d~}oy c.~ oc ~ o~ c,y
(16.21)

The first term on the right-hand side of (16.21) represents the plastic strain gradient at a unit
distance in front ofthe current tip of the crack, for an instantaneous crack length c and at the
current grain stress level ~. The second term in this equation represents the plastic strain
gradient occurring during the previous growth step. The last term, however, designates the
increase in the strain level that would be necessary to provide for the difference between the
first two terms.

Let lti, n denote the probability that the random walk of the crack tip will terminate
with the nth increment of time at the barrier (<f» between the two joining elements a and P
when the initial position of the crack tip is i.

After the first step, the position is either i + 1 or i-I with probabilities p and q = 1 - p, re­
spectively, as indicated above. Thus, one can write for 0< i < <f> - 1 and n = 1 that

(16.22)

subject to the boundary conditions:
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TtO•n = Tt"'.n =0 for n> 1,
Tt",.o = 1 and Tt i.O=0 for i> 1

(16.23)

The boundary conditions (16.22) are valid for all i with O<i<<I> and n~O. The solution of
(16.21) subject to (16.22) is given by

n. = <1>-1 2n p(n+iY2 q (n-iY2I,n

~ { n-,( nk) , (nik)}xLJ cos - sm -
k=\ <I> <I>

(16.24)

Figure 16. 11. Growth ofa transgranular crack. Reprinted from Haddad, Y. M. (1986) A
stochastic approach 10 the intemal damage in a structured solid, Theoretical and Applied
Fracture Mechanics 6, 175-85, with kind permission from Elsevier Science Publishers
B.V. (North-Holand).
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Considering, now, the case in which X. = 0 is the only absorbing barrier, i.e., when <I> = co. In
this case, by adjusting the boundary conditions (16.22) accordingly and letting <I> -co in
(16.23), the latter becomes

n. =2np(n+iY2 q (n-iY2
I,n

\

XJ{COSn - \ (nX) sin (n X) sin(nXi)}dX
o

Equation (16.24) leads to the probability of eventual absorption at the barrier <1>, i.e., when
the transgranular crack reaches the grain boundary ahead. Denoting the latter by P, then

which can be written as

p=E 1t;,n=( I- JI-4Pq )i
n=O 2q

(16.26)

for q~ p,

for qs p

(16.27)

Two PropagatingFissures. In Fig. 16.11, the local positions of two neighboring particles are
identified by the two local coordinate frames iX\, i~, iX3 and j/X\ j/~ j/X3. The two
particles may be sited within the same grain a or within two adjoining grains a and ~ as
shown in the figure.

Thus, during the fracture process, the tip of the nucleated fissure of particle i may
follow a random walk characterized by a finite set of states iX =0,1, ... ,j, ... , «P<I>with prob­
abilities ip, iq and j n. as identified previously in the section above pertaining to the growth
of a transgranular crac"'k. The second fissure, nucleated of particle it, may also follow in its
growth a random walk defined by the finite set of states j/X =0', 1, ...,j',..., «13<1> with·1,',' ., ., .
probabilities I p, • q and In., n" where I p = I p( .p). Accordingly, a simultaneous
absorption of the two propagating fissures may occur at the grain boundary, up <t>, if

in. j'J,n nj',n' , (16.28)
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subject to the conditions (16.23).

Further, the probability of eventual, simultaneous absorption of the two fissures at the grain
boundary could be expressed by the condition

j'
1tj ',n' , (16.29)

which can be further expressed in terms of the associated probabilities ofgrowth, p and p',
by utilizing equations (16.26) and (1627)

As soon as the crack tip strikes in it growth, the grain boundary ahead, a debonding effect
might take place between the two adjoining grains.

lntergraflular Facture
In the present model, a fracture zone between two adjoining grains is seen to consist of two
parts (Axelrad, 1984). A cohesive zone, in which the neighbouring grains act as completely
bonded and a debonded (free) zone in which bonding has ceased to exist. The existence of
such a free zone could have been initiated by a perfect debonding process due to the increase
of local stress, or as a result of ductile fracture by void formation intercepting the grain
boundary as dealt with in the previous section. From this point of view, the free zone is one
which will initiate an intergranular crack propagation or debonding process towards the
cohesive zone. In this context, following Axelrad (1984), we assume that the intergranular
fracture process occurs in a rather cooperative manner, i.e., bonds can dissociate and reform
within the same mechanical state. Thus, it may be visualized that the breaking of intergranular
bonds will occur in such a manner that energy is released activating bond formation within
the same sites in the specimen. Hence, we consider a process such that the number of
intergranular bonds can experience positive as well as negative jumps. Thus in general, a time­
dependent nonhomogeneous birth-and-death model (Kendall, 1948) is seen to be applicable

If at time t, the material system is in the state [ ([ = I, 2, ... ) corresponding to a number of
existing intergranular bonds n(t): n1> one considers that both. the intensities of positive and
negative transitions to be time-dependent. The latter are designated, respectively, in the.
following analysis by .1.(t) and Il(t). Accordingly:
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(i) The probability of transition from the state L to ( L + 1) in the
interval (t, t + ~t) is >..(t) ~t + O(~t);

(ii) The probability of transition from the state L to (L - 1) in the interval
(t, t + ~t) is 11 (t) ~t + O(~t);

(iii) The probability of a transition to a state other than a neighbouring
state is O(~t);

(iv) The probability of no change is 1 - (>.. (t) + 11 (t» + O(~t);

(v) The state L. = °is an absorbing state corresponding to the breakage
of all inter-granular bonds within the material specimen.

The above assumptions lead to the relation

Pr(l +~t) = >"(t)Pr_l(t)~t

+[I-{>"(t)+Il(t)}~t]Pr(t)

+ Il(t) Pl: .(t) ~t +O(~t),

(16.30)

where Pt is the probability that the material system is in the state Las defined above. Equa­
tion (16.30) leads in the limit to the following differential equation

dP (t)it =>"(t)Pr-t(t)

- [>"(t) + 11 (t)] Pr (t) + 11 (t)Pr ' J(t),

which holds for L= 1, 2, .... for L= 0, however, one has

dP (t)
_0_ = ll(t)Pt(t)dt

(16.31a)

(16.31b)

The solution ofEqn. (16.31) can be obtained with the aid ofgenerating functions. Hence;
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where:

Pr(t) = [I - (t)][1 - Y(t)J [Y(t) J1: -I ,

L = 1,2,... ,

Po(t) = (t),

e -y(l)
(t)=I-­

Q(t)

1Y(t) =1--
Q(t)

y(t) =f bl(t) - A(t)J dt, and
o

(16.32)

(16.33)

The probability of total intergranular bond dissociation is, then, given with reference to
(16.32) and (16.33) by
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If .. (t) ey(t)dt
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CHAPTER 17

INTELLIGENT MATERIALS· AN OVERVIEW

17.1. Introduction

Engineering materials are used either for their inherent structural strength or for their
functional properties. Often a feed back control loop is designed so that the mechanical
response of the material is monitored and the environment that is causing such a
response can be controlled. The evolution of a new kind of material termed
"Intelligent", "Smart", or "Adaptive" by various researchers, e.g., Rogers (1988) and
Ahmad (1988), witnesses a significant development in materials science whereby the
referred-to smart material adapts itself to suit the environment rather than necessitating
to control the same. In this context, development in the area of materials research aims
at incorporating intelligence into engineering materials, enabling them to sense the
external stimuli and alter their own properties to adapt to the changes in the
environment.

This chapter discusses possible forms of intelligence that may be incorporated in these
materials. Three basic mechanisms of intelligent materials, namely, the sensor,
processor and actuator functions are described. Implementation of these in the
microstructure of various materials, as well as associated algorithms and techniques are
illustrated. Different models, control algorithms and analyses developed by various
researchers are reviewed and their potential applications in engineering materials are
presented.

17.2. Definition of an Intelligent Material

"Intelligent" or "Smart" materials may be defined as "Those materials which sense any
environmental change and respond to it in an optimal manner", e.g., Rogers et ai.
(1988). From this definition and the analogy of the bionic system of humans and
animals, it can be seen that the following mechanisms may be essential for any material
to be made intelligent.

(i) A sensing device to perceive the external stimuli (e.g., skin
which senses thermal gradients, an eye that senses optical signals,
etc.), termed as "sensor" function.
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(ii) A communication network by which the sensed signal would be
transmitted to a decision-making mechanism (e.g., the nervous
system in humans and animals), termed as "memory" function.

(iii) A decision-making device which has the capability of reasoning
(e.g., the brain), termed as "processor" function.

(iv) An actuating device, which could be inherent in the material or
externally coupled with it (e.g., stiffening of muscles in humans
and animals to resist deformation due to external loading), termed
as "actuator" function.

All of the above mechanisms need to be active in real time applications, for the
material to respond intelligently. Another important factor in the overall process is the
time of response. This is the interval between the instant when the sensor senses the
stimulus and that of the actuator response. An optimum time interval is crucial in the
design of intelligent materials and is dependent on the type of application.

17.3. The Concept or Intelligence in Engineering Materials

As mentioned earlier, designing a material system which incorporates sensor, processor
and actuator functions is the fundamental step in the evolution of an intelligent material
for achieving a desired response adaptable to the environment. This concept is
illustrated in Fig. 17.1.

Sensor

External
stimuli

Actuator
1-_+__- function of

smart
materials

Figure 17.1. Concept of an intelligent material. Reprinted from Iyer, S. S. and Haddad,
Y. M. (1994) Intelligent materials - An ovelView, Int. J. Pres. Yes. & Piping 58,335­
44 with kind permission of Elsevier Science Limited.
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17.3.1. SENSOR FUNCTION

The concept of a sensor function in a smart material is defined as the ability of the material
to sense the response characteristics of self with respect to environmental factors such as
mechanical loading, temperature, humidity and electrical inputs. An example of this
function is that of a piezoelectric sensor embedded in a composite material. Such sensor
diagnoses the mechanical disturbance imposed on the material by generating a voltage
which can be further measured and analysed.

17.3.2. MEMORY AND PROCESSOR FUNCTION

This mechanism stores the signals which are sensed and transmitted earlier by the sensor
function. The characteristics of these signals are then compared with pre-stored
acceptable values acquired during the 'training' process of the processor (see Chapter 18).
The training process may be carried out using an artificial intelligence technique, e.g,
pattern recognition method (Chapter 18). Typically, this function is in the form of an
executable artificial intelligence software that could produce a logical outpl.:t in the form
of an electrical voltage that could further be amplified and used to activate an actuator
mechanism.

17.3.3 ACTUATOR FUNCTION

This mechanism is coupled with the material. It produces an output corresponding to the
signal received from the processor function. This output is usually in the form of a

Amplifiers ,
sensor output
and etuator
Input signals

ensors
Composite

~E~=~::E~~/"beam
Actuators

CPU emal
power

-­Control circuit
Host processor

Figure 17.2. Incorporation of sensor. processor and actuator functions in an intelligent
composite beam. Reprinted from Iyer, S. S. and Haddad, Y. M. (1994) Intelligent
materials - An overview, lilt. J. Pres. Yes. & Piping 58, 335-44 with kind permission
of Elsevier Science Limited.
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restoring stress, strain or change in temperature, or stiffness, of the actuator mechanism
that is coupled with the material. This change would be designed to neutralize the effect
of the change in environment on the material, thereby adapting the material continuously
to its environment. A typical intelligent composite cantilever beam which comprises of
sensor, processor and actuator functions is illustrated in Fig. 17.2.

17.4. Artindallntelligence in Materials

Different forms of substances that could be incorporated into the material as sensors and
actuators are piezoelectric and piezoceramic devices. Optical fibres are used as sensors.
Shape memory alloys, shape memory polymers and electrorheological fluids are employed
as actuators. The following subsections describe the effectiveness of such materials as
intelligent substances and their successful implementation in real time applications; e.g
Takagi (1990).

17.4.1. PIEZOELECTRIC AND PIEZOCERAMIC DEVICES

Piezoelectric and piezoceramic materials could be used as sensors and actuators in
intelligent materials. These materials can convert a mechanical signal to an electrical
voltage. Various researchers have developed models, through analytical and numerical
simulation as well as experimental techniques, to verify the concept of piezoelectric
materials as intelligent sensors and actuators. The reader is referred to, among others,
Kraut (1969), Crawley and Luis (1985, 1987), Sung-Honein et a/. (1991), Kyu Ha et a/.
(1991), and Lee et a/. (1991).

A piezoelectric material is a crystal in which electricity or electric polarity is
produced by pressure. Conversely, a piezoelectric material deforms when it is subjected
to an electric field. The first characteristic expresses the so-called "direct" effect, while
the second expresses the "converse" effect; e.g., Cady (1946), Gerber and Ballato (1985),
and Ikeda (1990). Following the above characteristics of a piezoelectric crystal, if the
pressure on the crystal is replaced by a stretch, the sign of the electric polarity would be
reversed accordingly. This is determined by the crystal structural "bias" which establishes
whether a given region on the surface is subjected to a positive or a negative mechanical
effect. In the converse effect, the same unidirectional aspect determines the sign of
deformation when the direction of an electric field is reversed in the crystal. It is this
reversal of sign of mechanical strain with that of the electric field that distinguishes
piezoelectricity from electrostriction; e.g. Cady (1946), Olson (1956) and Bailey and
Hubbard (1985).

The basic quasi-static theoretical treatment of a piezoelectric material under
loading is based on the definition of four parameters that describe the elastic and electric
states of this material. These are the elastic stress (Ojj), elastic strain (€ij)' electric
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displacement (OJ and electric field (~j)' Any two of these four parameters may be chosen
to be the independent variables and the other two will accordingly be the dependent
variables in the model. In addition to the above-mentioned parameters, the mechanical
equilibrium equation (ojij + Xi =0), Maxwell's equation (O~i =0) and the electrical and
mechanical boundary conditions would be specified for a complete description of the
electromechanical state ofthe piezoelectric material.

Constitutive Relationships
The phenomenon of piezoelectricity is assumed to be linear, whereby the electric and
elastic quantities are considered to be linearly related. Thus, the electric polarization (PJ
is seen to be related to the elastic stress au by the relation

P, = dljkOjk (17.1)

where the components of the third order tensor dijk are the piezoelectric strain
coefficients.

The existence of such a polarization will result in an electric field ~i which would
be linearly related to the polarization Pi through the relation Pi = EOXU~j where Eo is the
universal dielectric constant and Xu is the electric susceptibility coefficient of the material.
Therefore, the complete equation for the direct piezoelectric effect is written as

(17.2)
or, in terms of the corresponding strains Ejk ,

(17.3)

where the components eijk are the piezoelectric stress coefficients.

An alternative form to equation (17.2) and (17.3) is expressed in terms of the
electric displacement, i.e.,

(17.4)

where Ka. is the permittivity tensor.

In the converse effect, strains (or stresses) are produced. They are assumed to be
linearly related to the imposed electric field ~;, i.e.,

Ejk = dljk~'

OJk = -e!Jk~i

(17.5)

(17.6)
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The occurrence of a stress (or strain) would further evoke a corresponding mechanical
response in the crystal. The total stress contribution of a converse piezoelectric effect is,
thus, expressed as:

(17.7)

The corresponding strain contribution is given by

(17.8)

where in (17.7) and (17.8), E;jId and CUId are the elastic modulus and compliance tensors,
respectively.

Table 17.1 describes the utilization ofdirect and converse effects as applied to the
sensor and actuator functions of intelligent materials.

TABLE 17.1. Piezoelectric sensors and actuators

Type Piezo- Input Output Applications
effect

Piezo Direct stress voltage sensors for mecha-
ceramic nicalloading
(PZT)t

Converse voltage strain actuators for
deformation control

Direct mechanical voltage sensors for static and dynamic
Piezo loading loadings. Also, as passive
electric (static and vibration absorbers
polymer dynamic)
(PVDF)tt

Converse voltage strain strain rate
control

t Lead zirconate titanate piezoelectric ceramics
tt Polyvinylidene fluoride

Piezoelectrics as Sensors and Actuators
As mentioned in the foregoing, mechanical displacement and electrical voltage are the
varying parameters of the intelligent material when using piezoelectrics as sensors and
actuators. Mechanical disturbance is converted into electrical voltage by a piezoelectric
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sensor. On the other hand, a piezoelectric actuator is activated by an electrical input to
produce specific mechanical effect (e.g., strain or vibrations) through proper control
algorithms; e.g. Sung-Kyu et al (1991). Such mechanical effect would then be used to
compensate or control undesired effects such as deflections, excessive vibrations caused
by the external stimuli on the engineering material or structure with which the intelligent
material is incorporated. Sung-Kyu et al (1991) and Honein et al (1991) have successfully
demonstrated that this active mechanical control could be effected on laminated
composites by the use of distributed piezoelectric materials. Fundamental relationships
have been derived from the basic principles, presented by equations (17.1) to (17.8)
presented in the foregoing. A 3-0 Finite Element procedure was adopted and supported
by experimental results.

Piezoelectric-polymers as Intellige11l Sensors and Actuators
Polyvinylidene fluoride (PVDF) is a piezoelectric polymer that can be used for
sensor/actuator functions. The piezoelectric polymer may be embedded inside a structural
member to actively control, for instance, the vibrations by dissipating the elastic energy
imposed on the member (see, e.g., Ramachandran et al., 1990). For this, a long bar of test
specimen coupled with a layer of piezoelectric polymeric substance has been considered,
with the lateral dimensions much smaller than the length. The polar direction is taken
along the length of the specimen. The attenuation of mechanical vibrations in a passive
absorbing element has been studied. This attenuation is achieved by converting a large
fraction of elastic energy into electrical energy using the piezo-electric coupling effect and
then dissipating the electrical energy using a simple resistive element. For efficient
damping characteristics, the coupling coefficients must be large. In order to determine the
damping factor (tan 6), constitutive equations of piezoelectric material coupled to the
structural member were derived in a dynamic environment, where a harmonic plane wave
propagating inside the material specimen has been considered The results of the study
indicate that it is possible to dissipate the mechanical vibratory energy imposed on the
material through passive damping by piezoelectric polymers. It has also been proven
through experimental work; e.g. Hagood et al. (1988), that it is possible to shift the peak
damping to the frequency range of interest.

Active vibration control of a cantilever beam using distributed piezoelectric polymers and
ceramics were studied by Honein et al. (1991), Lee et al. (1991) and Bailey and Hubbard
(1985). All these studies included similar expressions derived from the fundamental
principles of piezoelectricity, where piezoelectric sensors and actuators were used with a
control algorithm to suppress the vibrational excitement.

Strain-rate Control Algorithm
Lee et al. (199 I) used a "strain-rate control feedback mechanism" for the control
algorithm. Based on the linear piezoelectric theory, the one-dimensional electrical
displacement 0 in a piezoelectric material can be related to the mechanical strain E in
the same direction via the relationship:
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(17.9)

where d is the one-dimensional piezoelectric strain per charge constant, E is Young's
modulus and e is the one-dimensional piezoelectric stress per charge constant. A
piezoelectric polyvinylidene fluoride (PVF2) film was used in this work as both sensor and
actuator. Using a current amplifier to interface with the high impedance output of the
piezoelectric material, piezoelectric strain rate sensors were created.

Bailey and Hubbard (1985), developed an active vibration damper for a cantilever
beam using distributed parameter actuators on the basis of distributed parameter control
theory. The distributed parameter actuator was the piezoelectric polymer (PVF2). The
control algorithm for the damper was based on the work done by Kalmann and Bartram
(1960) on "Lyapunov's second method" for distributed parameter systems.

Numerous other articles have been published in the area of active vibration control of
intelligent structures. Crawley and Luis (1987), for instance, have presented the use of
piezoelectric actuators to suppress vibrational excitation in three different test specimens
namely, aluminum, glass epoxy and graphite epoxy. Both analytical and experimental
methods are presented and a scaling analysis has been performed to demonstrate the
effectiveness in transmitting strain to the structure. Electronic damping of a large optical
assembly has been studied by Forward et al. (1983). In this, piezoelectric ceramic strain
transducers were used as sensors and actuators and the data taken during the study
indicate the effectiveness of the devices even at high levels of acoustic and vibrational
noise.

17.5. Optical Fibres as Sensors

Optical fibres have been used effectively as sensors in intelligent materials. Optical fibres
may be classified, in general, into the following two types.

i) An extrinsic sensor which operates only as a transmitting medium
for light but performs none of the sensing functions.

ii) An intrinsic fibre optic sensor which utilizes some intrinsic property
of the fibre to detect a phenomenon or to quantify a measurement
A list of intrinsically measurable variables through the use of optical
fibres is given in Table 17.2.

Glass and silica fibres form a basis for a broad range of sensors. The latter utilizes
fibre properties to provide signals, indicative of external parameters such as force,
temperature and deflection that are to be measured; e.g. Main (1985). The intrinsic
properties of glass and silica qualify fibre optics as smart materials. Optical fibres are
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capable of performing as a sensor as well as a transmitter of the sensor's signal. Claus et
al. (1988) developed an optical wave guide embedded in composites that can be used to
determine the two-dimensional dynamic strain levels to which the material specimen is
subjected to. This was carried out by using the change in the optical power transmitted in
the fibre due to the induced strain in the structure and processing the resultant signal.

17.6. Shape Memory Alloys (SMA)

Shape Memory Alloys (SMA's) possess an interaction between the state of loading they
are subjected to, the resulting strain and the thermal environment in which they are loaded.
If these alloys are deformed at one temperature, they will completely recover their original
shape when their thermal state is raised to a higher temperature. On the other hand, if the
alloys are constrained during recovering, they can produce a mechanical effect (a recovery
force) that is related to their temperature oftransformation. Several alloy systems exhibit
the phenomenon of shape memory (see, e.g., Wayman and Shimizu, 1972). A number of
such alloy systems and their characteristics are given in Table 17.3.

TABLE 17.2. Applications of optical fibres

Variable

Stress

Strain

Temperature

Methodology

Photoelastic
effect

Change in optical
power due to
deformation

Thermal change in
refractive index

Applications

Fibre composites embedded with
optical fibres can detect mechanical
loading & vibrations

Strain could be sensed in structures
embedded with optical fibres

Thermal state of fibre composites
could be monitored during manu­
facturing by embedded optical fibres

Shape memory alloys have emerged as an alternative choice for situations involving
dynamic control of large structures, which would often require vibration suppression and
deflection control induced by adverse environment; e.g., Rogers et al. (1988). The
mechanical deformation and thermal cycling of a shape memory alloy is illustrated by a
stress-strain-temperature diagram in Figure 17.3.
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TABLE 17.3. Alloy systems exhibiting shape memory effect

8ME-alloy Transportation Recovery force for
systems temp.• 2% strain in Kglmm2

Nitinol l 373 K 17

Cu-Zn-A12 350K 9

CANTIM753 480K 14

149.93% nickel and 50.03% titanium
225.9%, zinc, 4.04% aluminum and rest is copper
3 11.68% aluminum, 5.03% nickel, 2.00% Manganese, 0.96% titanium
and rest is copper
• Temperature of transformation depends upon the composites of the alloy system.

As shown in Figure 17.3, the shape memory alloy is mechanically deformed to a plastic
strain of4% and the load is then removed (Curve OAB). To regain its original shape, the
alloy is heated above its austenite end of transformation temperature At (Curve BCO').
The 4% strain is recovered between the temperatures of start and end of austenite
transformation, A. and At respectively.

f-------71A

Figure 17.3. Stress-stram-temperature diagram for a SMA (After Wayman, 1989).
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Martensite forms at a temperature below the temperature of martensite formation M.,
when the shape-memory alloy cools under no stress. Martensite can also form at
temperatures above the temperature M. if a stress is applied at such temperatures and the
formed martensite is termed as 'Stress Induced Martensite' (SIM). If the alloy is stressed
at a temperature above that of austenite end of transformation Ar, the alloy goes into a
super elastic loop (O'EFGO') as illustrated in Fig. 17.3. This means that the strain of 4%
is recovered completely on removal of load and the material behaves perfectly elastic.

The variation in the stress to produce SIM increases linearly with temperatures
above M. and obeys the modified Claussius-Clayperon relationship; e.g. Wayman (1989).

(17.10)

In the equation above, 0a is the applied stress above the Martensite formation temperature
M. to induce SIM.

6 is the ambient temperature
6H is the latent heat of phase transformation and
ETran• is the transformation strain of the super elastic loop

So far, shape memory effect has been considered only as one way effect, where an
SMA wire, for instance, deformed below the temperature of Martensitic end of
transformation Mr temperature can regain its original shape when heated to a
temperature above that of Ar- But when cooled again to the temperature of Martensite
start of transformation M., the wire's original shape remains and the material does not
assume the 'deformed' shape. This is 'one way shape memory effect'. In the case of 'two
way shape memory effect', however, a deformed SMA material below Mr regains its
undeformed configuration when heated to a temperature above the temperature of
Austenite end of transformation Ar (see, e.g., Delaey et al., 1974). However, the
undeformed configuration spontaneously attains its deformed shape when cooled below
Mr. The specimen can, however, recover its undeformed configuration if heated to
temperatures above Ar- Thus, it is possible to produce two geometric configurations of
the material, by subjecting it to thermal cycling. The latter is termed as the "trainahility of
two way shape memory effect"; e.g. Wayman, 1989.

17.6.1. MATERIAL INTELLIGENCE USING SHAPE MEMORY ALLOYS

Thermomechanical environment subjects materials to cyclic thermal loadings, leading to
fatigue and other undesirable mechanical effects. If the shape memory material is made to
alter its mechanical properties with respect to a mechanical loading, many of the induced
strains could be controlled. In this case, the thermal environment is sensed by an
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incorporated sensor and the SMA-material acts as an actuator by changing its mechanical
response properties when heated (e.g., by passing an electric current through the SMA
material).

In a multi-layered composite laminate with embedded SMA-fibres, excellent
vibration suppression could be achieved when the laminate is subjected to dynamic
loading; e.g., Rogers et al. (1988). Varying the mode shapes of induced vibration could
be also achieved by varying the stiffness of SMA-fibres. This is accomplished by utilizing
the large force created on constraining the micromechanical phase transformation from
deformed state to undeformed state. Figure 17.4 illustrates, for instance, the effect of
temperature on the variation ofstiffness of nitinol fibres.
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Figure /7.4. Approximate stiffness variation of Nitinol with temperature
(After Jackson et al. • 1972).

It is also possible to use SMA-fibres as simple thermomechanical actuators rather
than integrating them into a fibre-matrix system; e.g., Cross et al. (1969). This is achieved
by coupling the thermomechanical actuator to the structural member externally By
ensuring proper coupling between the actuator and the structural member, the effects of
the SMA actuator could be transferred to the parent material. Thus, shape memory alloys
can be used effectively as actuators in intelligent materials when coupled with proper
sensor and control algorithms.
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17. 7. Shape Memory Polymen

Polymeric materials are generally viscoelastic in response behaviour and have the
capability (e.g., Figure 17.5) of changing their dynamic properties (storage modulus (E'),
loss modulus (E") and loss tangent (tan 6) with variations in environmental factors such as
temperature, frequency and time; e.g. Ferry (1970), Murayama (1978), Nashif et. al.
(1985), and Corsaro and Sperling (1989). Thus, polymeric materials have the capability of
smart materials. This is accomplished by a sensor/actuator mechanism that could be
incorporated in a structural member so that external stimuli such as mechanical vibrations
could be sensed. Through a suitable control mechanism, the dynamic moduli of the
polymeric material could be made to change (to adapt itself to the new environment) (see,
for instance, Ganeriwala and Hartung, 1989). This could be achieved by shifting the loss
factor (tan 6) towards the frequency spectrum that matches the imposed vibrational
frequency, so that the absorption of the imposed vibrational frequency would be
maximized. This shifting could be carried out by varying the loss modulus (E") or the loss
factor (tan 6) of the polymer damper with respect to temperature or frequency.
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Figure 17.5. Schematic illustration of the variation of dynamic moduli of a polymer.
Reprinted from Iyer, S. S. and Haddad, Y. M. (1994) Intelligent materials - An
overview, 1m. J. Pns. Ves. .{ Piping 58, 335-44 with kind permission of Elsevier
Science Limited.
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17.7.1. MECHANISM OF SHAPE MEMORY IN A POLYMER

Shape memory polymers are unique polymeric materials which can recover their original
shape before deformation at lower temperature (below the glass-transition temperature
T.), upon heating them to a temperature above T. (see, e.g., Yoshiki and Shun-Ichi,
1988). This is an apparent advantage over ordinary polymers. An ordinary polymer when
stressed, may not recover completely to its original undeformed configuration if the stress
is released, thus, resulting in permanent deformation. In a shape memory polymer,
however, the recovery loop is completed upon heating. Thus, a shape memory polymer is
able to revert back to its original shape without undergoing any permanent deformation.

17.8. Electro-Rheological Fluids

The viscosity of certain fluids is influenced by the applied electric field. This phenomenon,
termed "Electroviscous Effect", was reported around the tum of the century; e.g. Duff
(1896). Researchers; Andrade et al (1946), have found an increase in the viscosity of
conducting polar liquids of up to 100%, upon application of electric fields of the order of
1-10 KV/cm. For the electroviscous effect to occur, both polar molecules and conducting
impurity ions are needed to be present. Large increases in viscosity, due to an applied
electric field, for suspensions of finely divided solids in low viscosity oils was found as
early as 1949. This effect termed as "Winslow Effect' is attributed to field induced fibre
formation of the particles between the electrodes, thereby requiring additional shear stress
for flow; e.g. Conrad and Sprecher, 1987.

The above said phenomenon has recently been termed as "Electrorheology" (see,
e.g., Gandhi and Thomson, 1988), and has been applied in the development of actuator
mechanisms in intelligent materials. When used with suitable sensors and control
algorithms, electrorheological fluids can be made to change their properties by the
application of electric field upon them.

The electrorheological behaviour of a suspension of fine silica particles in
napthenic acid is governed by the Newtonian fluid flow principle (without an externally
applied electric field). This principle is expressed as,

t = TJY

where

t is the applied shear stress
y is the shear strain rate and
TJ is the Newtonian viscosity
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When an electric field (~) is applied, the shear stress (t) was found to increase to
a critical value (to) which must be overcome before any significant flow of the fluid
occurs; e.g., Klass and Martinek (1967) and Uejima (1972). That is,

(17.11)

where "to is independent of y, but increases with ~.

Klass and Martinek (1967) used suspensions of silica particles in napthenic acid,
and Uejima (1972) used cellulose in insulator oil to verify this phenomenon
experimentally. The experimental verification indicates that to is proportional to the
square of the field, i.e., to cc ~2. In the electrorheology phenomenon, the magnitude of
electric field is the important parameter rather than, for instance, the spacing between the
electrodes (see, for example, Conrad and Sprecher (1987).

17.8.1. MATERIAL INTELLIGENCE USING ELECTRO-RHEOLOGICAL FLUIDS

With reference to Fig. 17.6, a mechanical structural member which contains
electrorheological fluid, when not activated, has a very low composite stiffness. This state
represents the undisturbed configuration.
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Figure 17.6. Electrorheological fluid as an actuator in a smart beam. Reprinted from
Iyer. S. S. and Haddad, Y. M. (1994) Intelligent materials - An overview, lilt. J. Pres.
Ves. & Piping 58. 335-44 with kind permission of Elsevier Science Limited.
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When an environmental input (e.g. mechanical loading or a difference in thermal
gradient) causes, for instance, deflection in the structural member, it would be desirable to
in::rease the stiffness to control the deflection. This is achieved by sensing the external
mechanical loading through incorporated sensors. The sensed signal is then processed in a
microprocessor, which activates an auxiliary electric input to produce a desirable voltage.
This voltage, when applied to the electrorheological fluid contained in the mechanical
structural member, increases the viscosity of the fluid, thus, practically converting it into a
solid. As a result, the overall stiffness of the specimen is increased, resisting the external
loading and preventing deformation. The above said process could be made to take place
in 1/1 OOOlh of a second. Experimental investigations conducted, for instance, by Gandhi
and Thompson (1988) have verified the concept of electro-rheological fluids as intelligent
material actuators. These authors were able to illustrate that robot arms could be made
adaptable to external loading via changing its stiffness.

As demonstrated in this chapter, smart materials have the ability to improve mechanical
structures to be more advanced and reliable. Although the concepts of the techniques described
in this article were discovered decades ago, only recently that such techniques have emerged as
potential constituents in intelligent materials methodology. The formulations for piezoelectrics
indicate the nature of direct and converse effects and their possible use in sensor and actuator
technologies. Discussions relating to shape memory alloys, shape memory polymers and
electrorheological fluids, illustrate the usage of these materials as actuators in smart material
systems. The increase in stiffness of shape memory alloys and the change in the dynamic moduli
of shape memory polymers with temperature offers distinct advantages in controlling the static
and dynamic state of mechanical structures. Also the development of different feed back
mechanisms based on control algorithms and the increase in sophistication of microprocessor
technology and pattern recognition methodology will definitely play an important role in the
advancement of processor function.
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CHAPTER 18

PATTERN RECOGNITION AND CLASSIFICATION METHODOLOGY
FOR THE CHARACTERIZATION OF MATERIAL RESPONSE STATES

18.1. Introduction

In the present Chapter, we discuss the design procedure of a computer-based expert
system, in conjunction with a non-destructive quantitative examination technique, e.g.•
acousto-ultrasonics, for the identification ofmaterial response states.

Acousto-ultrasonics (AU) is a relatively new quantitative non-destructive exam­
ination technique that combines aspects of conventional "Ultrasonic" and "Acoustic
Emission" practices. It has been proven to be a suitable approach to quantify
microstructural and morphological states of materials and the related mechanical prop­
erties (e.g., Tanary et al.• 1992, and Haddad and Iyer, 1995&1996).

Acousto-ultrasonics may be interpreted as "acoustic emission simulation with
ultrasonic sources" (Vary. 1987). In the acousto-ultrasonic technique, stress waves are
"simulated' to resemble acoustic emission waves. but without disrupting the material, i.e.,
without the application of an external loading (Vary. 1988). The working hypothesis of
the acousto-ultrasonic technique may be stated as:

"More efficient stress-energy transfer and strain redistribution, in the
microstructure oj the material ~pecimen. during mechanical loading,
would correspond to an enhanced mechanical strength ojsuch materiaf'.

In the AU practice, the multi-interactions of the ultrasonic-wave with the material
microstructure usually result in complicated waveforms that are quite difficult to analyse.
A relatively new approach to the analysis of AU signals is the use of"Pattern-recognition
and Classification Methodologies". In this approach. acousto-ultrasonic waveforms are
identified as belonging to a class. where each class represents one of different states of the
tested material-property. For this purpose, each waveform is mathematically treated as a
multi-parametric entity, which is called a "pattern vector".

Each component of such a pattern vector represents a value of a parameter, also
called ''feature''. which is used for the identification of the AU signal. In the pattern­
recognition (PR) practice, a computer-based pattern-recognition system. labelled
"Pattern-recognition Classifier", is designed on the basis of AU signals pertaining to
known material states.

Classification of unknown patterns is based on the so-called "decision jtmctlol/S"
There are two main approaches to generate these decision functions. i.e., deterministic

422
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and statistical. The deterministic approach comprises decision rules that are established
by the assumption that a minimum of a function of a so-called "generalized distance"
between a pattern of values (outputs) of a particular event and various known classes of
such an event indicates that the pattern belongs to the class indicated by the minimum of
the said function (e.g., Tou and Gonzalez, 1974). The statistical approach, however, is
based on the maximization of the probability of classifying a pattern as belonging to a
particular class, when it appears to belong, at the same time, to another class (e.g., Fu,
1976).

Decision functions are usually determined by limited-size samples of pattern vec­
tors that are selected for the design of the Pattern-recognition system. In this context,
arbitrary decision functions are initially assumed and, then, through a sequence of iterative
learning steps, these decision functions are made to approach satisfactory forms. This
procedure is called "Learning and Estimation" of decision functions (e.g., Andrews, 1972,
Chen, 1982 and Devijver, 1982). The technique has been recently used (e.g., Haddad and
Iyer, 1995&1996, and Molina and Haddad, 1995&1996) to test solid polymers, which
characteristically show high attenuation of ultrasonic waves.

18.2. The Acousto-Ultrasonics Technique

[n the AU practice, Figure J8.1, a broadband transducer inputs a repetitive series of
ultrasonic pulses into the test specimen. A receiving transducer, located at a specific
distance from the sending transducer, captures the already transmitted wave. Both trans­
ducers are coupled at normal incidence to the surface of the specimen. The transmitted
ultrasonic wave into the material specimen is considered to be affected by the
microstructural and morphological properties of the material specimen that determine its
mechanical performance. Accordingly, it is postulated that the captured AU signal would
contain information concerning the overall mechanical response of the material specimen.
Although a number of test configurations are possible, the most desired experimental
configuration is the one in which the sending and receiving transducers are located on the
same side of the specimen, as demonstrated in Fig. 18.1. This configuration is advanta­
geous when inspecting, for instance, components of a large structure in service. Experi­
mental work on solid polymers by, for instance, Lee and Williams (1991) and Iyer and
Haddad (1993), on metals by Tanary (1988), and on different classes of composites by
Vary (1982) and Williams and Lampert (1980) revealed the convenience of using the AU
transducer configuration described above (Fig. 18.1).

Although the transmitting transducer injects longitudinal waves normal to the
specimen surface, the sound waves radiated into the material produce oblique reflections
and shear waves. The resultant stress waves, which consist of longitudinal and transverse
components, propagate in the material specimen interacting with a significant portion of
the microstructure along their path. In many situations, as discussed in the foregoing, it is
possible to obtain information on the mechanical behaviour of the material from the AU
wave propagation data. In this context, acousto-ultrasonic waveforms have been shown
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to be sensitive to interlaminar and adhesive bond-strength vanatlons (Tanary, 1988).
Acousto-ultrasonics have been proven to be useful in assessing micro-porosity and micro­
cracking produced by fatigue cycling (Williams and Lampert, 1980). The technique has
been also used in estimating the variation in strength of structural composites (Vary,
1987), as well as, in the evaluation of their residual strength and degradation due to cyclic
fatigue and impact (Nayeb-Heshmi et a/., 1986). The technique has been further used in
determining the strength of wire ropes (Dos Reis and McFarland, 1986), the tensile
strength of nylon ropes (Williams et a/., 1984) and in the prediction of the filler content in
wood and paper products (Dos Reis and McFarland, 1986). Strength of ceramic materials
and the effect of hydrothermal aging on composites have been, also, evaluated successfully
using the acousto-ultrasonic approach (Phani et a/., 1986).

Ciampa
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Speciml!n Rubber.f'oam Pad

Figure 18. I. AU-transducer setup. "Reprinted from Molina, G. 1. and Haddad, Y. M.
(1995) On the identification of residual impact properties of materials by acousto­
ultrasonics - A pattern recognition approach, Acta Mechanica Sinica . Vol 11, No.1,
February 1995,34-43, with kind permission from Allerton Press, Inc."

As illustrated in Figure 18.2, the pulsar-sender is a printed circuit board capable of
pulse generation. It emits electric voltage pulses to the piezoelectric transducer at a
predetermined rate resulting in acoustic pressure waves that have frequencies in the ultra­
sonic range of 1-20 MHz. As mentioned in the foregoing, the emitted wave is to interact
with the microstructure of the material before being captured by the receiving transducer.
As shown in Fig. 18.2, the pulsar-sender is connected to the pre-amplifier and, in turn, to
an acoustic emission (AE) testing facility. The AE facility receives the captured wave­
form, converts the signal from an analog to a digital form and, then, transfers the data to a
digitization board. The latter possesses a signal processing capability. It digitizes the
signal with the use of a specialized real-time data acquisition and signal processing soft­
ware. As soon as a signal is digitized, the digitizer triggers the pulsar again to send an­
other input-wave which interacts with the material and the sequence of operations men-
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tioned above are repeated. After digitization, waveforms are stored electronically in
separate data files for later analysis.

WAYVOftM
DATA

AJlA&,VSl'

Figure 18.2. A schematic diagram of the acousto-ultrasonic test set-up. "Reprinted from
Int. J. Pres. Ves. & Piping 67, Molina, G. 1. and Haddad, Y. M. , Acousto-ultrasonics
approach to the characterization of impact properties of a class of engineering materials
(1996),307-15, with kind permission from Elsevier Science".

The rate of emission of input pulses is determined by a 'repetition rate utility'
which is operated by the controlling software. The latter initiates the waveform genera­
tion and reception. A properly designed software should, also, allow easy selection of
threshold setting, gain, damping, frequency, etc.

A major concern with any quantitative non-destructive evaluation technique, such
as Acousto-ultrasonics, is the reproducibility ofmeasured data. A rational approach to the
design of a suitable setup for AU data acquisition is a customized trial under the guide of
previous research; see, for instance, Iyer (1993), Russell-Floyd and Phillips (1988), and
Tanary (1988).

Acousto-U/trasonic Parameter
A quantifYing parameter to interpret the information contained in the received acousto­
ultrasonic signal was originally proposed by Williams and Lampert (1980) and was adopt-
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ed for the verification of the characterization of the mechanical performance of a class of
materials by Tanary (1988), Tanary et al. (1992) and Iyer (1993). It is referred to as the
'Aco/lsto-Ultrason;c Parameter (AUP)' and is interpreted in the present work, with
reference to Fig. 18 3, as follows

where

p

AUP(V) = " Vi.C -C )I ~ ,\', ,,1
,.-11

Vi is the voltage at the ith level above threshold,
Cj designates the number of counts at the ith level, and
Vp denotes the peak amplitude of the waveform.

(18.1)

The acousto-ultrasonic parameter, as identified by Eqn. (18.1) above, is seen in the pres­
ent work as an identification property of the wave propagation characteristics of the
material.
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Figure 18.3. Calculation of the acousto-uhrasonic parameter (AUP). "Reprinted from
Tanary. 5 .. Haddad. Y. M.. Fahr. A. and Lee. S. (\992) Nondestructive evaluation of
adhesively bonded joints in graphite/epoxy composites using acousto-ultrasonics. JOl/r­
nal of Pressl/re Vessel Technulogy, Tran.mclion.\· oflhe ASMf:. August 1992. Vol. 114.
3-l5·52. with kind permission of ASME"



www.manaraa.com

427

Factors Affecting Acousto-ultrasonic Waveform Measurement
Other than material property variations, several important parameters relating to the
experiment set-up would affect the waveform. These parameters may be grouped as
"external' to the testing system, e.g., the pressure applied on the transducers, the type of
couplant, between the transducers and the test specimen, and the distance between the
transducers, and "internal" in the testing system. e.g., the frequency of the propagating
wave, 'gain' used to amplify the signal and the threshold voltage above which the signal is
digitized (Russel-Floyd and Philips, 1988). These parameters and their effects on AU
wave form are discussed, for instance, by Tanary !1988), Iyer (1993) and Molina (1994).

External Parameters. The type of couplant used to create continuity between the trans­
ducers and the test specimen is an important factor that affects the resultant waveform.
Figure 18.4 presents experimental data (e.g., Haddad and Iyer, 1995) concerning the
reproducibility of the acousto-ultrasonic results and the clarity of the transmitted signals
for three different types of couplant, namely, acoustic emission gel SC-2, water and petro­
leum jelly. It is seen, from the latter figure, that, for the case of solid polyvinylchloride,
tested at room temperature, the couplant SC-2 gives high and consistent readings of AUP.
Such readings should also fall well within the calibration range of the instrumental setting.
These results have also shown to be valid when testing other classes of materials including
metals (e.g., Tanary, 1988) and polymeric base composite materials (e.g., Molina, 1994).

The change in distance between the sending and receiving transducers would also
affect the test results quite significantly, as it corresponds to the extent of the material
microstructure being examined by the travelling ultrasonic waveform. An illustrative
example of the variation of AUP with the distance between the sender and receiver trans­
ducers is shown in Fig. 18.5 for the case of solid Polyvinylchloride tested at room temper­
ature; e.g., Molina, 1994. Similar to the parameters mentioned above, the pressure ap­
plied on the transducers is an important factor that would affect the experimental data
obtained. It was reported in the literature, e.g, Henneke (1983), that for repeated AU
measurements, large loads (as much as 20 lbs.) could be applied to the transducers. In the
experimental work of Iyer and Haddad (1993) and Molina and Haddad (1995, 1996), for
instance, it is indicated that the load should be applied uniformly with a magnitude just
sufficient to eliminate unwanted reverberations within the couplant (see, also, Tanary et
al., 1992).

Internal Parameters. The acousto-ultrasonic waveform is influenced by internal factors
concerning the experimental hardware setting, such as gain and frequency of the injected
wave. Following the discussions given by Tanary (1988) and Tanary et al., (1992), an
optimization of the instrumental setting should be carried out to find the best combination
of transmitting frequency and amplitude gain. Thus, the system gain would be selected on
the basis of sensitivity of the transmitting and receiving transducers. In the experimental
work presented here, the set value is chosen, so that the signal to noise ratio is sufficiently
high, while, the maximum signal amplitude is to be held below the saturation level of the
receiving instruments. In this context, the frequency of the acousto-ultrasonic waveform
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should be set at a value which would result in optimum conditions for acousto-ultrasonic
measurements. Further, this frequency should fall well within the band width of the broad
band pulsar and receiving transducers. This consequently enables the sampling rate to be
set at a reasonably high level and would still capture a significant number of waveforms
without exceeding the memory space of the digitizer (e.g., Finkel, 1975, and Haddad and
Iyer 1995&1996).
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Figure /8.4. Variation of the acousto-ultrasonic parameter with couplant type. Material:
solid Polyvinylchloride (PVC), tested at room temperature. "Reprinted from In'. J. Pres.
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nition approach for the mechanical characterization of engineering materiats, 89-98
(1995), with kind permission from Elsevier Science".

100

t * t$
eoo i

Xl i
400 , o Av..... AlW·s_....._.....

200

0
0 0.11 1II

XI

X, : Distance betw.... transduc8fs In Inches.
X2 : Ac_to-lJtra"",," "-_tar tAUP, In mVqlt•.

Figure /8.5. Sensitivity of AU measurements to distance between transducers. Material:
solid Polyvinylchloride (PVC), tested at room temperature (Molina, 1994).



www.manaraa.com

429

18.3. Fundamentals of the Design of Pattern-Recognition (PR) Systems

In statistical pattern recognition (e.g., Andrews, 1972 and Tou et al., 1974), pattern
values are classified into their respective classes by plotting their common feature values in
a 'feature space'. The latter is an Euclidean space where the coordinate axes represent the
common features of interest to the problem being analysed. The design of a pattern rec­
ognition system generally involves the following three steps:

Step I
This step is concerned with the representation of input data which can be
measured concerning the state of the material that is required to be recog­
nized. The AU signal provides the raw data values that are necessary for
the pattern classification process. Each point of the signal would be a
characteristic feature in the time domain. However, the primitive measure­
ments of the acousto-ultrasonic waveform could become very large. As
stipulated in the foregoing, each of such primitive measurements would
carry a 'small portion' of 'information' about the microstructure of the
material which had been interrogated by the AU wave (e.g., Haddad and
Iyer, 1993)..

Step II
Due to the large number of variables involved, it becomes necessary to
'extract' important 'features' from the primitive measurements. Each of the
selected features would carry a small, but significant information for classi­
fication purposes and would be selected according to the physics of the
problem. This is achieved through a process known as the 'feature extrac­
tion' process. The latter constitutes the present Step II. In a typical study,
the adopted software extracts in excess of 100 standard features that could
be used for wave-form analysis.

Step III
The third step in pattern-recognition system design involves an optimum
decision procedure associated with the classification process. On assum­
ing, for instance, that a machine is to be designed to recognize 'M' different
pattern classes denoted, for instance, by WI>W2,"" ~, then, the pattern
space can be considered as consisting ofM regions, each ofwhich encloses
the pattern points of a class Wi (i = 1,2, ... , M). The recognition problem
can, then, be viewed as that of generating the decision boundaries which
separate the referred-to 'M' pattern-classes on the basis of the observed
measurements. In Pattern Recognition, decision functions are established
by the so-called "learning and estimation" procedures. They are imple­
mented by means of a computer-based set of rules which constitutes the
pertaining "Pattern Recognition Classifier". Examples of decision func-
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tions which may be employed in the design of corresponding PR-classifiers
are:

(I) Empirical Bayesian,
(II) Linear Discriminant,
(III) K-Nearest Neighbour, and
(IV) Minimum Distance Classifier.

Figure 18.6 illustrates the concepts of the decision functions based on the classification
schemes mentioned above (e.g., Haddad and Iyer, 1995&1996). Meanwhile, the reader is
referred to Iyer (1993) and Molina (1994), among others, for details concerning these
classification schemes.

For the purpose of establishing the set of sample patterns of known classification,
the software is to be designed to split the input data values into two separate files after
normalizing the data with respect, for instance, to its variance. The first file contains the
values of the normalized feature values which are used to create the boundary between the
pattern classes. Once the boundary is established, the classifier is evaluated using the data
contained in the second file. The results of the "training' and "evaluation" processes are
expressed as percentage of success in forming distinct clusters in the feature space from
the known pattern values. The predictability of such a classifier is tested using a raw data
set taken from an unknown sample of relevant input data whose values could be deter­
mined by an alternative technique.

Thus, the task of a pattern-recognition system may be defined as "the categoriza­
tion of input data into identifiable classes via the extraction of significant features or
attributes from a background of relevant data". Operationally speaking, a PR System
would perform the following transformation

(18.2)

where the "Pattern-Space p." comprises the sets of feature values, also called primitive
pattern vectors, which are extracted from either analogical or digitized descriptions of the
material response states to be recognized; the "Feature Space F." comprises the pattern
vectors formed by a selection of the features which carry the discriminatory power be­
tween classes for the given problem; and the "Classification Space C." is a frame of
defined classes where a pattern of unknown classification is identified as belonging to a
known class. The design of a "Pattern Recognition System" is the building of a series of
procedures to perform this transformation.

18.3.1. FEATURE EXTRACTION AND NORMALIZATION

Figure 18.7 presents schematics of the procedure employed to perform the partial trans­
formation from Pattern Space (P.) to Feature Space (F.). With reference to Figure 18.7,
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AU signals pertaining to each class are divided in two sets; namely, "Classifier" and
"Testing Sets". Classifier Sets are used for building the classifier, as well as for further
testing of the"Training" and "Evaluation" performances of the designed classifier. Test­
ing Sets are used for testing of the "Classification Performance".
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Figure 18.6. Two-parameter acousto-ultrasonic wave classification: (a) a simple decision
function for two pallern classes; (b) the proximity concept as a classifier; (c) nearest
neighbour classifier; (d) a schematic illustration of the empirical Bayesian classifier.
(WI: a class of undamaged material states; w]: a class of damaged material states; XI:

peak amplitude of the acousto-ultrasonic waveform; x]: inter-peak distance of the
acousto-ultrasonic waveform). "Reprinted from Int. J. Pres. Ves. & Piping 63, Haddad,
Y. M. and Iyer, S. S., An Acousto-ultrasonics pattern recognition approach for the
mechanical characterization of engineering materials, 89-98 (1995), with kind permis­
sion from Elsevier Science".
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To carry out the feature extraction and normalization procedures, both Classifier
and Testing sets have to be arranged as "File-Trees", respectively called "Classifier Trees"
and "Normalization Trees", which correlate together the AU signals which are stored as
computer files. A file tree is "an arrangement of the records of digitized AU signals in
related classes by means of a root Organization File". An example of a Classifier Tree
for the building of classifiers is presented in Figure 18.8. With reference to the latter
figure, each class of the Classifier Tree comprises a limited number of specimens, each of
them is represented by a number of AU-signal records taken successively at small time
intervals, e.g., of one second.

Clallifter Set.

. Tra1llillS FUel
o! Normalised
Fea'uree.Valu"

A I B Ie

EftluatiOD rUe.
o! Normalised
Fe.'urea-V.hlf:ll

A I B I.C

A B C

TettiD's FUel

Figure 18.7. Schematics of the feature extraction and normalization procedures. "Re­
printed from Molina, G. 1. and Haddad, Y. M. (1995) On the identification of residual
impact properties of materials by acousto-ultrasonics - A pattern recognition approach,
Acta Mechanica Sinica . Vol II, No. I, February 1995, 34-43, with kind permission
from Allerton Press, Inc....
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Figure 18.8. Classifier Tree. Arrangement of AU-records pertaining to classifier sets.
"Reprinted from Molina, G. 1. and Haddad, Y. M. (1995) On the identification of resid­
ual impact properties of materials by acousto-ultrasonics - A pattern recognition ap­
proach, Acta Mechanica Sinica . Vol 11, No.1, February 1995, 34-43, with kind per­
mission from Allerton Press, Inc....

The software, designed for the purpose of this study, extracts 108 feature-values
from each digitized record of an AU-signal. These values are of diverse order of magni­
tude in five domains of wave-description (i.e., Time, Frequency, Phase, Cepstral and
Auto-correlation domains). Hence, Feature normalization is necessary so that the
involved features would have comparable values in the dealt with "n-feature space".
Feature normalization may be performed by means, for instance, of the Method of Zero­
Mean Unit-Variance Mapping; e.g., Iyer (1993), and Haddad and Iyer, 1995 &1996. In
the referred-to method, a normalized feature value ~j for feature j is obtained from the
non-normalized value xj of a pattern vector x as follows

X-fl
~ = _J_
1 S

(18.3)

where p is the mean of the values of the j-feature for all pattern vectors being investi­
gated; and s is the standard deviation of the values of the j-feature for all classes under
consideration. This means that for a multiple class problem, the "global mean" of all
values of the j-feature is used as the referrd-to mean p, while the average of the standard
deviation values for all the classes is taken as s. Normalized values will be loosely
bounded to the range (-I, I), measured in standard deviation units.

As it is shown in Fig. 18.7, the "Classifier" and "Testing" sets are subjected to the
successive operations of "Feature Extraction", "Feature Normalization" and, when it
applies, "Feature-value Splitting'. Feature-value Splitting has the purpose of obtaining
two files of records representing the same AU signals for the Training and Evaluation of
the classifiers, as it is explained in the following sub-section.
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18.3.2. FEATURE SELECTION AND CLASSIFIER BUILDING

Figure 18.9 presents schematics of the procedure used in the present study for building
and testing of classifiers by means of feature files. This procedure corresponds to the
partial transformation from the "Feature Space" to the "Classification Space".

With the possible availability of a significantly large number of features for describ­
ing the AU signal, the problem of selecting an optimal set of best discriminating features
could be very complex. To solve the problem of feature selection, a procedure may be
established for the design of a classifier that would give the highest average of the classifi­
cation performance for the classes being considered. For each particular classification
problem, it is possible to establish a ranking of the feature's discriminating-ability between
classes. In this context, for instance, the 'Fisher Distance', also called the 'Fisher Discrim­
inatory Ratio', may be used for ranking the involved features; e.g., Iyer (1993).

For each type of classifier, the selection of features is guided by strictly following
the adopted rule of ranking. Thus, no isolated features are chosen. Instead, only com­
plete ranking-series may be taken. The procedure adopted for the design of one type of
classifier is carried out in building a series of classifiers of this type by starting with the
classifier designed by using the first-ranked feature only. Classifiers of the same type are,
then, obtained by adding features from the succession already determined by the ranking
series. The so-called ''perjormance-classification'' by means of the'Testing Sets' are then
experimentally obtained for the designed series of classifiers. In the feature selection
procedure, the number of features that gives the highest average of the obtained classifica­
tion performance may be chosen to design the most appropriate classifier for a given
classification problem.

[J[J[J

Figure /8.9. Procedures for building and testing ofclassifiers. "Reprinted from Molina,
G. J. and Haddad, Y. M. (1995) On the identification of residual impact properties of
materials by acousto-ultrasonics • A pattern recognition approach, Acta Mechanica
Sinica. Vol II, No. I, February 1995, 34-43, with kind pennission from Allerton Press,
Inc.".
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]8.3.3. TRAINING AND PERFORMANCE EVALUATION OF THE CLASSIFIER

As discussed earlier in this chapter, the designed classifiers work on the basis of 'decision
functions '. The ability of these decision functions to distinguish between the same
digitized records, used to build them, can be expressed as the percentage of correctly
classified records. Since this percentage represents the effectiveness of the training of the
classifier to recognize the AU signals used, it is referred to as the "training" performance.

A classifier may, also, be evaluated by the percentage of correct classification
when classifying AU records obtained from the same specimens which were used in
building the classifier. This percentage may be referred-to as "Evaluation" performance.
The used procedure for testing the "Training' and "Evaluation" performances of a classi­
fier is displayed in Figure ]8.9.

18.4. Illustrative Applications

]8.4.] . CHARACTERIZATION OF THE STRESS-RELAXATION RESPONSE

In this subsection, we present a case study concerning the use of the acousto-ultrasonic
technique, in conjunction with statistical pattern recognition, to characterize the stress­
relaxation response of a class of linear viscoelastic material; namely, solid Polycarbonate
(PC), tested at room temperature. In this context, the value of the time-dependent "re­
laxed' stress is correlated with the "acousto-ultrasonic parameter (A UP)", introduced
earlier by Eqn. (18.1), for different strain input levels. Statistical pattern recognition
methodology, as described earlier in the previous section, is used to build a classifier for
different "relaxed' stress states.

When employed for the case of a linear viscoelastic material, suitably at different
times under a given level of strain input, the resultant acousto-ultrasonic waves would
contain 'features' pertaining to the time-dependent macro-mechanical property of stress­
relaxation of such material. This poses a typical statistical pattern classification problem.
The various material stress-relaxation states characterized by the particular features of the
pertaining ultrasonic waveforms would form distinct clusters in an n-dimensional feature
space. An unknown stress-relaxation response state of a specimen may then be matched
to one of the clusters and classified as being the respective material stress state.

Experimental Procedure and Results
An uniaxially loaded test specimen configuration of Polycarbonate (PC) is adopted for
performing the required stress-relaxation experiments. The material test specimens were
prepared as per ASTM D-638. Stress-relaxation tests were carried out under constant
strain levels of 0.01, 0.02, ... , 0.07. The corresponding experimental relaxation curves are
shown in Fig. 18.10. AU measurements were taken from material specimens already
undergone stress relaxation experiments corresponding to the three strain levels 4%, 5%
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and 6%, for the successive time intervals of 1,10,100,1000,10000 and 100000 sec., for
each of the mentioned strain levels. For each considered stress state, five material speci­
mens were tested. The different parameters concerning AU measurements and the values
of these parameters, as considered in the present work, are outlined in Table 18.1.
The acousto-ultrasonic parameter (AUP) was calculated for each AU measurement in
accordance with Eqn. (18. I). It is, then, normalized for each testing time interval t with
respect to the maximum of the average values at the same time interval t, for the five
specimens tested at this state. The normalization of AUP is carried out, in accordance to
the following expression in order to eliminate the effect of possible material variations
between the five tested material specimens.

AUP (t) I= AUP measuredat a relaxedstress state at time t
norm t Maximum ofthe average values ofAUPfor specimens tested at time t

(18.4)

where AUP"O".(t) I. is the normalized value of the acousto-ultrasonic parameter at time t
under a particular level of strain input e.

Strain

1%

-I- 2%...- 3%

-0- 4%

""*" 5%

-<>- 6%
-lr 7%1

ooסס1 100000

60

50

40..
Go
::!!

: 30

!
Ui
20

10

0
0 10 100 1000

Time. Sec.

Figure 18.10. Stress-relaxation of solid polycarbonate (PC) at room temperature. "Re­
printed from Mechanics ofMaterials 24, Haddad, Y. M. and Iyer, S. S., On the charac­
terization of the stress-relaxation response of a class of linear viscoelastic material using
acousto-ultrasonics: A pattern recognition approach, 199-211(1996), with kind pennis­
sion from Elsevier Science".
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TABLE 18.1. Factors affecting acousto-ultrasonic waveform measurement. Material:
Solid Polycarbonate (PC); tested at room temperature (Haddad and Iyer, 1996)

Factor

Pressure on the transducer

Couplant

Distance between the transduc­
ers

Internal parameters of experi­
mental set-up

Method adopted in the present research

Constant force clamps were used to obtain
reproducible results; see Tanary (1988).
Acoustic emission gel (SC-2) was chosen to
obtain high, but consistent readings ofAUP;
see Iyer (1993).
25.4 mm was chosen to obtain high readings
ofAUP that would still fall within the calibra­
tion level of the instrumentation, see Iyer
(1993).
A frequency of750 KHz and a sampling rate
of 3.125 MHz with a gain of60 decibels
were chosen.

The magnitude of the "relaxed' stress in the material, for each testing time interval t, is
also normalized with respect to the maximum of the average of its values obtained, at the
same testing time interval t, for the five specimens tested at the particular strain level
considered. It is expressed as

(J Value of the "relaxed' stress in the specimen at time t
norm(t) I :: -l.F---if~h--"----'I"-"-' ----:-11:-,----=-h-----d--

E maximumo t eaverageoJ re,axeu stressesint especimensteste attimet

(18.5)

where Ononn(t)I. is the normalized value of the "relaxed' stress at time t under a par­
ticular level of strain input £

Fig. 18.11 illustrates the correlations between the'normalized acousto-ultrasonic
parameter', Eqn. (18.4), and the corresponding 'normalized relaxed stress', Eqn. (18.5),
for the same "relaxed" stress state, i.e., at the same time for each of the strain levels
considered. As shown in Fig. 18.11, for all strain levels considered, the value of the nor­
malized AUP(t) increases linearly as the stress in the material relaxes at a constant strain
level.

For the purpose of distinguishing between material states, three pattern classes were
chosen for designing a pattern classifier. They are represented by the resultant acousto­
ultrasonic waveforms belonging to three different stress states corresponding to time
intervals: I, 10000, and 100000 sec. These stress states are referred to, respectively as
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Class 1. Class 2 and Class 3. The acousto-ultrasonic waveform characteristics obtained
at these three stress states represent the raw data values for the pattern recognition analy­
sis.

As discussed in the foregoing, important features that can readily distinguish a
given waveform from other waveforms are ranked in order of their discriminatory power
according to the problem being analysed. These selected features represent values in
various domains whose units ofmeasurement are different. Thus, a normalization process
is initiated that normalizes the feature values of each of the class with respect to its mean
and variance; e.g., Iyer (1993) and Haddad and Iyer (1995, 1996).

1.2-r--------------,

0.3

0"'-----.---_---.-------'
0.3 0.85 0.9 0.95

Normalized relaxed slress

___ 4% strain

-+- 5% strain

-it- 6% strain

Figure 18.11. Correlation between AUP and 'relaxed stress at different times for strain
levels of 4%, S% and 6%. Material: Solid Po)ycarbonate (PC); tested at room
temperature. "Reprinted from Mechanics ofMaterials 24, Haddad, Y. M. and Iyer, S.
S., On the characterization of the stress-relaxation response of a class of linear
viscoelastic material using acousto-ultrasonics: A pattern recognition approach, 199­
211(l996), with kind permission from Elsevier Science".

The pattern classification approach that may be undertaken would depend on a prior
knowledge of the decision boundaries between the different classes under consideration.
For the purpose of designing a classifier, the normalized feature vectors are further split
into training files and evaluation files. The normalized feature values of acousto-ultrasonic
waveform obtained from two of the five specimens, tested at a particular relaxed stress
state, were treated as 'unknown specimens' and the acousto-ultrasonic waveforms obtained
from them were used for testing the designed classifier. Each of Figures ]8. ]2, ]8.13 and
18. ]4 illustrates a two-dimensional feature space. The latter is an Euclidean feature space
where the x-axis represents a selected feature and the y-axis represents another feature for
the purpose of classification. The adopted features are selected through different 'itera­
lions' based on the extent of separation of 'clusters of pattern vectors' belonging to the
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three pattern classes. Table 18.2 presents a list offeatures selected for the purpose of the
present case study.
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Figure 18.12. Feature-Feature projection for two of the selected features for 4% strain
level Material: Solid Polycarbonate (PC); tested at room temperature. "Reprinted from
Mechanics ofMaterials 24, Haddad, Y. M. and Iyer, S. S., On the characterization of
the stress-relaxation response of a class of linear viscoelastic material using acousto­
ultrasonics: A pattern recognition approach, 199-211(1996), with kind permission from
Elsevier Science".,.,....------------...,
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Figure 18.13. Feature-Feature projection for two of the selected features for 5% strain
level. Material: Solid Polycarbonate (PC); tested at room temperature. "Reprinted from
Mechanics ofMaterials 24, Haddad, Y. M. and Iyer, S. S., On the characterization of
the stress-relaxation response of a class of linear viscoelastic material using acousto­
ultrasonics: A pattern recognition approach, 199-211(1996), with kind permission from
Elsevier Science".
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Figure J8. J4. Feature-Feature projection for two of the selected features for 6% strain
level. Material: Solid Polycarbonate (PC); tested at room temperature. "Reprinted from
Mechanics ofMaterials 24, Haddad, Y. M. and fyer, S. S., On the characterization of
the stress-relaxation response of a class of linear viscoelastic material using acousto­
ultrasonics: A pattern recognition approach, 199-211(1996), with kind permission from
Elsevier Science".

With reference to Figures 18.12, 18.13 and 18.14, for each considered strain level,
Pattern class 1 corresponds to the 'original' or 'unrelaxed' stress state. Pattern class 2
represents the 'relaxed' stress state corresponding to the time interval of 10000 sec, Pat­
tern class 3 represents the 'relaxed' stress state corresponding to the time interval of
100000 sec. The results for training, evaluation and testing of the classifiers designed at
the strain levels of4%, 5% and 6% are listed in Table 18.3. As seen from Table 18.3, for
the training and evaluation process of the designed classifier, 100% of the pattern values
belonging to each of the three pattern classes forms three separate clusters for each of the
strain levels considered.

For the case of 4% strain level, the classification of unknown specimens to their
respective class is almost 100%. For the 5% strain level, however, the classification rate is
in the range of 71-91%. For 6% strain level, the classification rate is in the range of 89­
98%. This indicates a satisfactory level of classification.

A review of literature revealed that no research work has been carried out yet,
with the exception of the work presented here, on correlating the acousto-ultrasonic wave
propagation data with the time-dependent behaviour of material systems, e.g., stress­
relaxation of viscoelastic materials. Vary (1988), however, obtained correlations between
the so-called "stress wave factor (SWF)", a quantifYing parameter similar to the acousto-
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ultrasonic parameter (AUP), and the reduction in tensile strength of fibre-reinforced
composites. In evaluating adhesive bonded joints under tensile loading, Tanary (1988),
obtained a straight line fit for normalized AUP that decreased with the increase in stress
level. Williams et al.(1984), also, reported a change in AU measurement of nylon ropes as
the tension of the rope was increased. In this, the stress wave factor was found to de­
crease with the increase in the stress level.

TABLE 18.2. Normalized features selected for the identification of the
stress-relaxation response of solid Polycarbonate (PC) specimens. tested
at room temperature (Haddad and lyer, 1996)

Acousto-Ultrasonic feature
description

Domain of
the
waveform

Feature
number"

S8

37
43

13

Power
Power

Power
Phase
Time
Cross-correla- 96"
tion

Time
Inter peak distance from 1st to
2nd greatest.
Number of peaks above the sig­
nal base line.
2nd greatest peak amplitude
% of partial power in the 3rd
octant.
Greatest peak position
Greatest peak amplitude.
2nd greatest peak position

• Corresponding to number identification in the employed software.
•• For 5% strain level, features #5 and #96 were used instead of #49.

18.4.2. IDENTIFICATION OF RESIDUAL IMPACT PROPERTIES

Low-energy repeated-impact constitutes an important degrading factor in the residual
ability of solid polymers to withstand static and/or dynamic loadings. Since this type of
polymer degradation is likely to affect in-service structural components, quantitative non­
destructive examination techniques are often considered to assess repeated-impact damage
in polymeric material systems.

This case study is concerned with the application of acousto-ultrasonics, in con­
junction with Pattern Recognition and Classification techniques, to the identification of
residual impact properties of a class of polymeric material, namely, solid Polyvinylchloride
(PVC), at room temperature. PVC specimens of different low-energy repeated impact
damage states are processed by Acousto-ultrasonics (AU) to retrieve AU signals in the
form of digitized records. These AU signals are grouped as distinct classes, each pertain-
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ing to a known level of repeated impact damage. Describing features of these AU signals
are used to build pattern recognition classifiers. These classifiers are used to identify
unknown damage states in other PVC specimens by classifying the retrieved AU signals as
belonging to one of the already defined damage states (classes). Again, the obtained
results indicate that Acousto-ultrasonics in combination with Pattern Recognition and
Classification methodology can be used for the quantitative non-destructive identification
ofdamage states in PVC specimens ofunknown low-energy repeated impact conditions.

TABLE 18.3. Training, evaluation and testing of the classifier for the
identification of the stress-relaxation response of solid Polycarbonate (PC)
specimens, tested at room temperature. Classification scheme:
K-Nearesl Neighbour Classifier (Haddad and Iyer, 1996)

Strain Tbne, Correspondlnc Tralnlnc Evaluation Identification of
level sec. pallern class ('11» ('11» unknown specbnens

('11»

4% 100.0 100.0 100.0

ooסס1 2 100.0 91.04 97.10

ooסס10 100.0 98.7S 100.0

S% 100.0 100.0 91.40

ooסס1 2 100.0 100.0 71.23

ooסס10 100.0 100.0 79.27

6% 100.0 100.0 98.80

ooסס1 2 100.0 100.0 89.0

ooסס10 100.0 100.0 96.2S

Controlled Parameters/or AU Data-acquisition
The values of relevant parameters pertaining to the transducer configuration and instru­
mentation setup used for the acousto-ultrasonic measurements in the present case study
are presented in Table 18.4.

Material, Test Specimens and Classifiers
A solid polymer, Polyvinylchloride (PVC) is chosen for this study. The material test
specimens, of rectangular cross-section (i.e., 25.4 mm by 4.76 mm) and length of210 mm
are cut ofa constant-thickness sheet (4.76 mm). They were subjected to different levels of
controlled low-energy repeated-impact by repeatedly dropping a weight of 0.9 Kg from a
height of 1.2 m a number of times.
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TABLE 18.4. Controlled parameters for AU data-acquisition. Material: Solid
Polyvinylchloride (PVC); tested at room temperature (Molina and Haddad, 1995)

Parameter

Voltage Range
Gain
Wave Frequency
Sampling Rate
Distance Between Transducers
Couplant Medium

Set Value

oto +12 Volts
30 decibels
750KHz
3.125 MHz
19 mm (0.75")
Ultragel IIlM

Three levels of repeated-impact damage are obtained by varying the number of impacts
applied to each specimen. Accordingly, three classes of impact level are defined:

Class A : No impact,
Class B : Five impacts, and
Class C : Twenty impacts.

The specimens belonging to the above-mentioned classes of impact were tested
using acousto-ultrasonics under identical experimental conditions as outlined in Table
18.4. Based on the retrieved AU signals, the following four classifiers are designed for
each of the three input states (classes) using the procedure discussed earlier:

i) Linear Discriminant Classifier designed for the first best-ranked feature.
ii) Empirical Bayesian Classifier designed for the three best-ranked features.
iii) K-Nearest Neighbour Classifier designed for the four best-ranked features.
iv) Minimum Distance Classifier designed for the four best-ranked features.

Experimental Results ofPattern Recognition and Classification
Figure 18.15 displays the averages of"Training" and "Evaluation" performances for the
three classes of impact as pertaining to each of the four designed classifiers mentioned
above. As shown in the figure, good performances are obtained for the four designed
classifiers. The maximum of the averages of both Training and Evaluation Performances
are reached for the case ofthe K-nearest Neighbour Classifier.
Figure 18.16 presents the "Classification" performance for the four designed classifiers as
the percentages of correctly classified AU signals that were not used in the classifier
design. The experimental classification performance is obtained for each class by classifier
testing with the respective Testing Set. Averages of the pertaining performances for the
three classes of impact are also presented in Figure 18.16. Good performances are
obtained for the four types of built classifiers. The maximum of Classification
performance is reached for the case of Empirical Bayesian Classifier for the three impact
classes under consideration.
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Figure /8./5. Training and evaluation performances in percentage of correctly AU­
signals for the four designed classifiers 8S pertaining to repeated-impact damage classes
of solid Polyvinylchloride (pVC) specimens; tested at room temperature. "Reprinted
from Molina, G. 1. and Haddad, Y. M. (1995) On the identification of residual impact
properties of materials by acousto-ultrasonics - A pattern recognition approach, Acta
Mechanica Sinica , Vol 11, No. I, February 1995, 34-43, with kind permission from
Allerton Press, Inc....

Discussion ofClassifier's Performance
With reference to Fig. 18.15, good results are experimentally obtained concerning the
"Training" and "Evaluation" performances of the four designed classifiers. The fact that
training and evaluation performances are as high as shown in Fig. I8.15 is an indication of
the good repeatability of the AU-signal for the same specimen as well as between
specimens of the same level of impact damage. On carrying out the present study, it was
observed that classifiers that do not show good training and evaluation performances give
subsequently poor "classification" performance. Thus, if a classifier is to be used in
further identification of unknown-classification signals, excellent training and evaluation
performances should be a minimum requirement for such classifier.
???? With reference to Fig. 18.16, better classifier performance corresponds, in general,
to the identification of class A comprising undamaged specimens. However, on carrying
out the present study, it was observed that AU effective signal-discrimination between
different levels of impact damage may be more difficult than that between damaged and
undamaged-specimen classes. This may be explained by a more overlap of the probability
density functions pertaining to the two classes of effective damage (B & C).than that
occurring between the probability density functions pertaining to the class A (of
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undamaged specimens) and any of the other mentioned two classes (B & C) of damaged
specimens; Figure 18.17. An alternative explanation of the different discriminating ability
of the classifier for classes of undamaged and damaged specimens might be given by a
dispersion of testing-set values for the damaged specimens that is more extensive than that
for the undamaged ones. However, such a phenomenon was not observed in the present
study. As an example, Figure 18.18 presents a graph of the "cluster boundaries" for the
Classifier Sets compared with the feature values for the three pertaining Testing-Sets.
This two-feature space plot is illustrated for the case of the two best-ranked features.
Similarly, more dispersion is observed among feature values for damaged Testing-Sets B
and C, than that for values of the same features in the undamaged Testing-Set of class A.
Figure 18.18 shows, in addition, that values of class A may be easily identified in the
correct class, even if they show some dispersion with respect to the original Classifier-Set
values. On the contrary, classes Band C may present a more difficult identification
situation because of their overlapping. Bartos (1993), for instance, studied the feasibility
of performing pattern analysis of impact-damage due to single impacts of different levels
of energy on graphite-epoxy composite panels. Although using a different AU procedure
from the one described here, Bartos (1993) obtained Bayesian Classifier's performances
that are in good agreement with the performances obtained in the present study for this
type ofclassifier.

%
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o
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B&,eaian
Clueifter

Linear X-Nearest Minimum
DilCri· Neir;hbour Di.tance
millan' Clauifier Clulifier

Clumler

~CLASS A [XJ CLASS B
.mC~ASS C - AVERAGES

Figure /8. /6. Classification perfonnance in percentage of correctly classified AU­
signals for the four designed classifiers of AU-signals pertaining to repeated-impact
damage classes of solid Polyvinylchloride specimens; tested at room temperature.
"Reprinted from Molina, G. J. and Haddad, Y. M. (1995) On the identification of
residual impact properties of materials by acousto-ultrasonics - A pattern recognition
approach, Acta Mecho"ico Si"ico, Vol II, No. I, February 1995, 34-43, with kind
permission from Allerton Press, Inc.".
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With the above-discussed limitations, the presented application shows the viability
of characterizing low-energy repeated impact damage in PVC specimens by AU
methodology combined with Pattern Recognition and Classification (see Molina, 1994).

1r----------~

v ClaBll A
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second-ranked feature

°_1 0 1
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firat-folted (ea'ure
Figure /8.18. Cluster boundaries of classifier sets for the two best ranked features: First
greatest peak amplitude in the wave-autocorrelation domain and second greatest peak
amplitude in the wave-frequency domain. "Reprinted from Molina, G. 1. and Haddad,
Y. M. (1995) On the identification of residual impact properties of materials by acousto­
ultrasonics - A pallern recognition approach, Acta Meehaniea Sin/co, Vol 11, No.1,
February 1995,34-43, with kind permission from Allerton Press,lnc."

Figure 18.17. Probability densily function for the first ranked feature (Greatest peak
amplitude in the wave-autocorrelation domain). Data pertaining to repeated-impact
damage classes of solid Polyvinylchloride (PVC) specimens; tested at room temperature.
"Reprinted from Molina, G. 1. and Haddad, Y. M. (1995) On the identification of
residual impact properties of materials by acousto-ultrasonics - A pattern recognition
approach, Acta Meehaniea Sinica . Vol 11, No. I, February 1995, 34-43, with kind
permission from Allerton Press, Inc.".
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18.5 Design and Testing of a Pattern Recognition System

Following our discussion in the previous section, the choice of different sets of reference
patterns may imply, according to Equation (18.3), different mean and/or standard
deviation values for the normalization procedure and corresponding normalization
outcomes. Various Normalization Trees can be proposed for the normalization of the
involved Testing Sets. In the following, we discuss the suitability of a number of
Normalization Trees for an adequate testing of PR-c1assifiers. In this context, we confine
our attention to the impact case study presented above, whereby the following
Normalization Trees are employed (e.g., Haddad and Molina, 1998):

NT(i):

NT(ii):

NT(iii):

NT(iv):

Normalization Tree (i), Figure 18.19, comprises the three Testing
Sets.
Normalization Tree (ii), Figure 18.20, constitutes the pattern­
vectors pertaining to a single specimen from one of the classes and
the entire "Testing Sets" for the two other classes.
Normalization Tree (iii), Figure 18.21, includes the entire "Testing
Set" for one of the classes.
Normalization Tree (iv), Figure 18.22, pertains to the "Testing Set"
for one of the classes plus the three Classifier Sets previously used
for building the PR-c1assifier.

2,.2

NORMALIZATION TREE (I)
Organizalion File

I

I I I
CLASS A CLASS 9 CLASS C

TESTING SET TESTING SET TESTING SET
Fealure File Fealure File Fealure File

SPECIMEN A AU-dall SPECIMEN B AU-dala SPECIMEN C AU-dala
I-I ...., ".,

SPECIMEN '\-2 AU-dala SPECIMEN 9 AU-dala SPECIMEN C AU-dala
"·2 "·2

.......... .......... ..........

SPECIMEN A I AU-dala SPECIMEN B AU-dala SPECIMEN C AU-dala

Figure 18.19. Normalization tree (i). Arrangement of AU-data for the normalization of
''Testing Sets". "Reprinted from Haddad, Y. M. and Molina, G. 1. (1998) On the design
of acousto-ultrasonics - pattern recognition classifiers for the identification of material
response states, Energy Sources Technology Conference & Exhibition, ETCE98-4572,
Houston, Texas, February, 1998, with kind permission ofASME".
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NORI.AALIZATION
TREE III)

Organlzallon File

I

I I I
CLASS A CLASS e CLASS C

TESTING SET TESTING SET TESTING SET
Feelure File Feature File Feature File

SPECll.AEN A AU-dala SPECII.AEN B AU-dala SPECll.AEN C AU-data,., .. ·t no'
SPECU,AEN B AU-data SPECII.AEN C AU-dala...~ _.~

.......... ..........

SPECtI.AEN B AU-data SPECII.AEN C AU-dala
2_

Figure /8.20. Normalization tree (ii). Arrangement of AU-data for the normalization of
"Testing Sets". "Reprinted from Haddad, Y. M. and Molina, G. J. (1998) On the design
of acousto-ultrasonics - pattern recognition classifiers for the identification of material
response states, Energy Sources Technology Conference & Exhibition, ETCE98-4S72,
Houston, Texas, February, 1998, with kind permission of ASME".

NORMALIZATION
TREE em)

Organization FUe

a..ASS A
TESnNGSET
Featcxe Fae

- SPEOMEN A lot AU-odata
- SPEOMEN AN AU-dala
r- .'"......
-SP aE MEN A. A\J-data

Figure /8.2/. Normalization tree (iii). Arrangement of AU-data for the normalization
of "Testing Sets". "Reprinted from Haddad, Y. M. and Molina, G. J. (1998) On the
design of acousto-ultrasonics - pattern recognition classifiers for the identification of
material response states, Energy Sources Technology Conference & Exhibition,
ETCE98-4Sn, Houston, Texas, February, 1998, with kind permission of ASME".
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a
a

a

NORMALIZATION
TREE (iV)

Organization File

I
I I J I

CLASS A CLASS B CLASS C Class A
CLASSIFIER SET CLASSIFIER SET CLASSIFIER SET TESTING SET

Feature File Feature File Feature File Feature file

SPCIMEN A 1 AU-data SPCIMEN B 1 AU-data SPCIMEN C 1 AU-data ~PECIMEN A1_1 AU-dat
SPCIMEN A 2 AU-data SPCIMEN B 2 AU-data SPCIMEN C 2 AU-data PECIMEN A 1-2 AU-dat
..... -..........

ts'pcir:iEN B M AU-data
................

ISPEciMEN A 21 AU-datSPCIMEN A 1 AU-data SPCIMEN C N AU-data

Figure /8.22, Normalization tree (iv). Arrangement of AU-data for the nonnalization
of "Testing Sets". "Reprinted from Haddad, Y. M. and Molina, G. 1. (1998) On the
design of acousto-ultrasonics - pattern recognition classifiers for the identification of
material response states, Energy Sources Technology Conference & Exhibition,
ETCE984572, Houston, Texas, February, 1998, with kind permission of ASME".

The above types of Normalization Trees are examples of the normalization
arrangements that may be proposed for the testing of PR-c1assifiers:

- NT(i) should be optimal for the employed normalization procedure and
it may be a reference case for comparison with other Normalization Trees.
Design of NT (i) requires, however, a priori complete knowledge of
classification for the Testing Sets. It demands, before any normalization or
classification to be carried out, that patterns be correctly identified into
pertaining Testing Sets. Thus, building of NT(i) would not be possible if
we were dealing with pattern vectors of unknown classification. Given this,
NT(i) may be inadequate for testing the PR-classifiers.

- NT (ii) is a special case ofNT(i). It presents the situation that may arise
in practice when normalizing by NT(i) a set of either known or unknown­
classification patterns that comprises fewer patterns for one class than for
the other two classes.

- NT(iii) is a special case ofNT(i). It presents the situation that may evolve
when normalizing by NT(i) a set comprising only unknown-classification
patterns which actually belong to a single class.
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- NT(iv) is the proposed arrangement to solve the problem of adequate
normalization in this study. The case represented in Fig. 18.22 pertains to
the use of NT(iv) for testing the PR-classifiers by means of known­
classification Testing Sets. If NT(iv) is employed for the normalization of
unknown-classification patterns, they should be arranged as displayed in
Fig 1823

NORMALIZATION
TREE (iV)

Organization File

I
I I I I

CLASS A CLASS B CLASS C Unknown-Classification
CLASSIFIER SET CLASSIFIER SET CLASSIFIER SET AU-data

Feature File Feature File Feature File Feature file

SPCIMEN A 1 AU-data SPCIMEN B 1 AU-data SPCIMEN C 1 AU-data SPCIMEN X 1 AU-data
SPCIMEN A 2 AU-data SPCIMEN B 2AU-data SPCIMEN C 2AU-data SPCIMEN X 2 AU-data
................

LSFiC"INIEN B M AU-data
................ ................

SPCIMEN A 1 AU-data SPCIMEN C N AU-data SPCIMEN X K AU-data

Figure /8.23. Normalization tree (iv). Arrangement for the nonnalization of AU-data
with unknown classification.

Table 18.5 displays the experimental results for the four types of PR-c1assifiers
when employed for testing the recognition performance for the considered three impact
states of the material. The results of classification are presented, for each situation, as
percentage of the correctly identified pattern vectors, as normalized by each of the above
proposed types ofNormalization Trees.

The results of Table 18.5 show, for the same type of PR-classifier, when
identifying the same material state, significant differences of classification performance if
the pertaining Testing Set was normalized by different Normalization Trees. In general,
normalization by NT(ii) shows the highest classification performance, while NT(iii) shows
the lowest classification performances. For NT(iv), however, classification performances
are quite close to those pertaining to NT(i), specially for high rates of recognition.
It is evident from the results above that the normalization process can strongly influence
the testing performance. Previous work showed that pattern vector discrimination is
influenced by the overlapping of the probability density functions, of occurrence of a given
feature-value in a class, between classes; e.g., Haddad and Iyer (1995), and Molina and
Haddad (1995&1996). Figure 18.24 shows, for instance, the probability density function
for the first-ranked feature (greatest peak amplitude in the wave-autocorrelation domain
of description) in the three considered impact classes, as experimentally obtained for the
Classifier Sets dealt with earlier. In general, the more the referred to probability density
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functions are separated for any two classes, the higher the corresponding classification
performances for these classes.

Case NT(ii) can be analysed on the basis of the normalization expression (18.3). If
the hypothesis is made that the global mean ~(ij) of NT(ii) is not larger than the global
mean It(i) ofNT(i), i.e., when,

and

ItOi) ~ ~(;) (18.6)

(18.7)

where xj is the non-normalized value of feature j in a pattern vector x.
It can be reasonably assumed, for the purpose of this analysis, that the standard

deviation SOl) for NT(ii), as an average of corresponding values for all classes, where one
of them is represented by a sample of pattern vectors pertaining to a single specimen, is
not larger than sri)' obtained for the three classes considered in NT(i), i.e.,

(18.8)

By applying the above inequalities, (18.6) to (18.8), to the normalization equation
(18.3), it follows that:

~}(ii) ~ ~i(;)

(18.9)

(18.10)

where in the above equations (I8.9) and (18.10), ~ is the normalized value of feature j
for the pattern vector x, and subscripts (i) and (ii) refer, respectively, to NT(i) and NT(ii).
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Figure J8.24. Probability density functions for the best ranked feature (Greatest peak
amplitude in the wave autocorrelation domain).

Equations (18.6) to (18.10) above, indicate that NT(ii) may give higher values for
normalized features than those correspondingly obtained by NT (i). When, on the contrary,
the mean of the feature values for the class is higher than the global mean of the Classifier,
no such relation can be predicted for the normalized values. The analysis of equations
(18.6) through (18.10) is schematically shown in Fig. 18.24, where the probabilities of
occurrencePi of feature j are assumed as Gaussian distributions.

Figure 18.25 displays the probability density functions of unnormalized feature j
for the concerned classes in NT(ii). This figure shows, also, the distributions of feature j as
normalized by NT(i). Figure 18.25 suggests that normalization by NT(ii) may reduce the
overlapping of the probability density function distributions for the class under
consideration. Thus, it may lead to a higher classification performance as confirmed by the
corresponding results in Table 18.5.
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TABLE 18.5. Testing perfonnance for PR-classifiers of low-energy
repeated-impact states in PVC specimens, tested at room temperature,
when usi", different "Normalization Trees" for the testiOl~ sets

Type of Class T..-"NT"

Classifier (i) (ii) (iii) (iv)

(I) Empirical Class A 93.33% 96.00% 20.67% 88.00%

Bayesian Class B 74.00% 75.00% 54.00010 79.00010

Classifier Class C 75.00% 79.00% 6.00% 74.00%

Average 80.78% 83.33% 46.89% 80.33%

(II) Linear Class A 99.33% 100.00% 38.67% 90.00%

Discriminant Class B 27.00% 30.00% 21.00% 34.00%

Classifier Class C 57.00% 60.00% 39.00% 44.00%

Average 61.11% 63.33% 32.89% 56.00%

(III) K-Nearest Class A 98.67% 100.00% 44.67% 91.33%

Neighbours Class B 66.00% 65.00% 27.00% 63.00%

Classifier Class C 52.00% 62.00% 2.00% 47.00%

Average 72.22% 75.67% 24.56% 67.11%

(IV) Minimum Class A 93.33% 100.00% 18.67% 88.00%

Distance Class B 75.00% 74.00% 54.00% 75.00%

Classifier Class C 70.00% 84.00% 10.00% 65.00%

IAverage II 79.44% I 86.00% I 27.56% I 76.00% I
In general, Classifier performances for a given class, as tested by NT(ii), depend

on the relative position of the mean of the unnormalized class with respect to the global
mean, for each of the concerned features. Since NT(ii) is a particular case of NT(i), the
latter may not be adequate for the normalization of Testing Sets wich are required for
testing the Classifier.

Analysis of the case NT (iii) on the basis of the normalization expression (18.3) is
trivial. Since global mean Il(iii) and standard deviation S(iii) are those of the single class in
the NT(iii), the normalized distribution will be centred around zero-mean. Figure 18.26
presents schematics that can be used to compare the results pertaining to NT(iii) with
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those of NT(i), where the probability of occurrence Pi of feature j is assumed to have a
Gaussian distribution. It shows that NT(iii) gives, for the class under consideration, a
normalized density function which may significantly overlap with the other two classes.
This may explain why the classification performances are the lowest when experimentally
tested by NT(iii). Since NT(iii) is a particular case of NT(i), the latter may not be
adequate for the normalization of the involved Testing Sets in the testing of the pertaining
Classifier.

Classification performances for NT(iv) are very close to those of NT(i), specially
for high percentages of recognition. Thus, NT(iv) may be adequate for testing the PR­
classifier, given that the latter will be employed only when showing high recognition rates
for the considered classes. Further, an important advantage of NT(iv) is that such
normalization arrangement can always be built for both known and unknown classification
patterns, as respectively, displayed in Figures 18.25 and 18.26. Thus, when using a PR
Classifier, the operator must be provided with files containing the Classifier Sets, by which
an NT(iv) can always be determined. Given this condition, testing of Classifiers by
NT(iv) may give an adequate estimate of the probability of correct recognition for pattern
vectors ofa priori unknown classification.

~(il)

·1 o
~i(ii)

·1 0 ~J(i)

Figure /8.25. Schematics of the effects of Nonnalization Tree (ii) on the probability
density function of the dealt with classes.
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Class A

-I o C,j(iii)

Pj

Class C Class B Class A

o·1
C,j(i)

Figure /8.26. Schematics of the effects of Nonnalization Tree (iii) on the probability
density function of the dealt with classes.

The presentation in the foregoing shows the influence of the "normalization
procedure" on the testing of computer-based Classifier performance. There are a number
of Normalization Trees that can be built in a multiple-class problem. However, a critical
examination of the most intuitively obvious "Normalization Tree (;)" for the normalization
of pattern vectors shows that such a normalization arrangement may be inadequate for the
testing the PR-c1assifier.

Design of appropriate testing procedures requires, however, special consideration
to the fact that testing a PR-classifier is performed in practice by pattern vectors whose
classifications are a priori known. The intended purpose of such testing is to give an
estimate of the Classifier success in the recognition of pattern vectors of unknown
classification.

Testing of the Classification Performance requires that the Normalization Tree
employed in the testing process should be available for the further normalization ofpattern
vectors of unknown classification. This study proposes a Normalization Tree comprising
pattern-vectors from Testing and Classifier sets, which can always be built, irrespective of
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whether known or unknown classification was used for the concerned patterns.
Experimental results show that testing of a PR-classifier by such proposed normalization
arrangement may be adequate for the estimation ofthe PR-c1assifier performance.
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APPENDIX 0

THE 'L-TRANSFORM

D.l. Introduction

The subject of this Appendix is ofassistance particularly to the reader ofChapter 13, where
the z-transform is used frequently in the presented analytical treatment. In this context, this
appendix serves as a brief introduction of the concept of the z-transform and a number of its
basic properties. For more comprehensive treatment of the subject matter, the reader is
encouraged to consult the references provided at the end of the appendix.

The z-transform is the discrete-time counter-part ofthe Laplace transform. Meantime,
it is the corresponding generalization ofthe discrete-time Fourier transform. Both Laplace and
Fourier transforms have been dealt with in Appendix B. The properties of the z-transform
parallel, in essence, those of Laplace transform, but, with some apparent variances or
distinctions. These distinctions, as will be discussed in this Appendix, result essentially from
fundamental differences between continuous- and discrete-time signals and systems. Similar
to Laplace transform in the continuous-time case, and to Fourier transform in analysing both
continuous-time and discrete-time data (signals), the z-transform is an important tool in
performing transformations related to sequences in general.

The z-transformation of a sequence x[n] is denoted here by X(z), and is expressed
as

X(z) = L x[n] z-n
n=-oo

(1)

where z is a complex variable. Alternatively, the z-transform of the sequence x[n] may be
written as Z{x[n]}. In this case, the relationship between x[n] and its z-transform is
interpreted as

Z
x[n] H X[z] (2)

As already mentioned, similar to both Laplace and Fourier transforms (AppendiX B),
the z-transform possesses basic properties which make it a valuable tool in the analysis of
"discrete-time" signals and systems. Some of these properties are presented below.

458
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0.2. Properties of the z-Transform

Linearity

If z Xl (z), ROC (Region of Convergence) = Rl

and

then,

~[n] Z ~(z), ROC=~

Z
Axdn] +B~[2] AXI(Z)+B~(z), ROC containsRln~

(3)

i.e., the region of convergence (ROC) of the indicated linear combination is (at least) the
intersection ofthe individual regions ofconvergence R, and R1 .

Time-shifting

If x [n] Z X(z), ROC =Rx

then, x [n - no ] Z z -ft
oX(z), ROC =R

x
(except for the possible addition or deletion

of the origin or infinity). (4)

Frequency ofShifting

If

then,

x [n]
Z
X(z), ROC =Rx

'0 Z '0e J oft x[n] X( e -J °z), ROC = R
x (5)

Time-reversal

If

then,

x [n] Z
X(z), ROC =Rx

x[ -n] Z I
ROC=-

Rx
(6)

i.e., the region ofconvergence ofx[-n] is an inversion of R". In other words, ifz is in the
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region of convergence ofX [n], then -.!.- is in the region of convergence for x[-n].
Zo

Convolution Property

If

then,

~ [n]

z

z
~(z), ROC =~

XI [n] '" ~[n]
z

XI (z)~(z), ROC contains RIn ~ (7)

i.e., when two polynomials or power series XI (z) and X2 (z) are multiplied, the coefficients
in the polynomial representing the product are the convolution of the coefficients in the
polynomials X1(z) and X2(z).

Differentiation (in the Z-domain)

If X [n] z X(z), ROC =Rx

then, by differentiating both sides of the z-transform expression (l), it follows that

nx[n] z - z dX(z) ROC = R
xdz ' (8)

D.3. Relations Between the z-Transform and Fourier Transform

There are a number of important relations between the z-transform and Fourier
transform. In order to illustrate such relationships, one may express the complex variable z
in the following polar form

in which r is the magnitude of z and (.J is its angle.

In view of (1) and (9), one writes
~

X(rej(,J)= L x[n](rej(,Jrn
n=-oo

(9)
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~

X(rejc.l)= E {x[n]r-n}e-jc.ln
n= --

(10)

In view of the definition of Fourier transform (Appendix B), it is apparent that the
above expression, reads as X (r t!"), is the Fourier transform ofthe sequence x[n] multiplied
by r.... That is

X(rej(.»=S{x[n]r-n}

= X(z)
(ll)

for r =1, i.e. IZI = 1, the z-traosform (11) reduces to the Fourier transform ofthe sequence
x[o], i.e.,

X(z) Iz=ei '" = S {x [oj}

I

(12)

Unit circle

~

1 Re

Figure D. J. The "unit circle" on the complex z-plane. (The z-transfonn reduces to the
Fourier transfonn for values of z on the unit circle.)
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Thus, the z-transform reduces to the Fourier transform when the magnitude of the transform
variable is equal to unity (i.e., for IZI = 1 or z =~). In other words, and with reference to
Figure 0.1, the z-transform reduces to the Fourier transform, of the considered sequence, on
the contour, in the complex z-plane, ofa circle with a radius ofunity (IZI = I). This circle
in the z-plane is referred to as the "unit circle" and plays an important role in the discussions
concerning the properties of the z-transform.

The convergence of the z-transform following immediately from relation (12).
Referring to this relation, it is apparent that, for the convergence of z-transform, one requires
that the Fourier transform of x [n) roft converges. Thus, for a consequence x [n), one may
expect this convergence to occur for some values of IZI = r and not for others. In other
words, there is associated with the z-transform, ofa sequence x [n), a rank ofvalues of the
complex variable z for which the transform X(z) converges. This rank ofvalues is referred
to as "the region ofconvergence (ROC)".

ExampleD.l

Consider the signal x [ n ) = a nU [ n ) , where u [n) is the unit-step time series. Then,

and,

...
X(z)~ L x[n)z-n

n=--

..
X(z) = L anu[n)z-n

n=-..

(13)

..
For convergence of X"=o (z), we require that ~ Iaz -I In < 00. Thus, the region of

conveyance is the range ofvalues ofz for which Iaz n q< I, or, equivalently, I z I> I a I.
Then,

..
X(z) = L (az-I)n = ---

n=G I-az- I
z
z-a

Izl>lal

Consequently, the z-transform converges for any finite value ofo.
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Example 0.2

Consider x [n] = - a n U [ - n - I], where u [n] is the unit-step time series. Then,

n::- oo

- I

= - Lan z-n
n=--
~

=- L a -n Z n=- 1 - L (a -n z)D
n=1 n=O

If I a-I z I< I, or, equivalently, Iz I< Ia I, the sum in (14) converges and

(14)

1 1
X(z) = 1 - = ---

l-a-1z I-az- I
z

=--
z-a

(15)

As with the Laplace transform, the determination ofthe z-transform requires both the
algebraic expression and the region ofconvergence.

Example 0.3

Consider the foUowing signal which is the sum of two real exponential functions, and where
u[n] is the unit-step time series.

x[n]=( ~r u[n] +(iru[n]
The z-transform is then

(16)
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X(z)= t {(.!.)nu[n]+(.!.)nu[n]}z-n
n=-- 2 3

+- (I) n +- (I) n
= n~- '2 u[n]z-n +n~- 3" u[n]z-n

(17)

1 1
= +---

1 1 -I 1 1 -I--z --z
2 3

(18)

For the convergence of X(z), both sums in equation (17) must converge, which
requires that both

or, equivalently, I z I> 1. and
2

I z I> 1.. Thus, the region ofconvergence is I z I> 1. .
3 2
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Example D.4

The z-transfonn for the Example D.3 above can also be obtained using the results of
Example D.I. From the linearity property ofthe z-transfonn, that is, if x [n1is the
sum of two tenns, then X (z) will be the sum of the z-transfonns of the individual
tenns and will converge when both z-transfonns converge (Section D.2 above).

From Example D.3, one concludes that:

( l)n Z 1
-2 u[nl----

I
1 -I'--z
2

( I)n Z 1-3 u[n]_---
I

I -I'
--z
3

and consequently,

1Izl>­
2

1Izl >­
3

(19)

(20)

( I)n (I)n Z I I- u[n] + - u[n] _--- + ---
2 3 l-'!'Z-I l-.!.Z-I'

2 3

D.4. Regions ofConvergence for the z-Transform

IIz I>­
2 (21)

In this section, a number ofproperties ofthe "regions ofconvergence" for the z-transfonn
are presented (e.g., Oppenheim et aI., 1983):

P.I: The ROCofX(z) consists ofa ring in the z-plane centered about the origin.
This property is illustrated in Fig. 0.2, below, and follows from the fact that the ROC consists
ofthose values ofz = rei'" for which x [n] rof! has a Fourier transfonn that converges. Thus,
convergence is dependent only on r = Iz Iand not on w. Consequently, ifa specific value of
z is in the ROC, then all values ofz on the same circle (i.e., with the same magnitude) will be
in the ROC. This by itselfguarantees that the ROC will consist ofconcentric rings. As a
result ofProperty 6, below, the ROC must, in effect, consist ofonly a single ring. In some



www.manaraa.com

466

~, the inner boundary ofthe ROC may extend inward to the origin, thus reducing the RO.
For other specific cases, however, the other boundary can extend outward to infinity (e.g.,
Oppenheim et aI., 1983).

1m

----f--,~~--+--___blr_.."I"__;,__--Rc

Figure D.1. ROC as a ring in the z-plane. For specific cases the inner boundary can extend
inward to the origin in which case the ROC becomes a disc.

P.l: The ROC does not contain any poles.
As with the Laplace transform, this property is simply a consequence of the fact that a pole,
X (z) is infinite and therefore by definition does not converge.

P.J: IfxfnJ is offinite duration, thus the ROC is the entire t-plane, except possibly r.=O
andlorz =~

A finite-duration sequence has only a finite number of nonzero values, extending, say from
n = Nt, to n = N2, where N. and N2 are finite. Thus, the z-transform X(z) is the sum of a
finite number of terms, specifically,

Nz
X ( z) = L x [n] z -n

n=N,

In this context, the following remarks may be made:

(22)
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For z not equal to zero or infinity, each term in the sum (22) will be finite and
consequently x (z) will converge.
If N1 is negative and N2 positive so that x[n] has nonzero values both for n <0 and
n>O, then the summation in (22) includes terms with positive powers of z and
negative powers of z. As I z I - 0, terms involving negative powers of z become
unbounded, and as Iz 1- "", those involving positive powers ofz become unbounded.
Consequently, for N1 negative and N2 positive the ROC does not include z = 0 or
z=oo.
IfN. is zero or positive, there are only negative powers ofz in expression (22), and
consequently the ROC includes z = "".
IfN2 is zero or negative, there would be only positive powers ofz in equation (22)
and consequently the ROC includes z = o.

P. 4: IfxfnJ is a right sided sequence, and ifthe circle I: 1= 1', is in the ROC, then all
finite values 0/:/01' which I: I> 1', will also be in the ROC

In the context of this property, the following remarks may be made:

A right-sided sequence is zero prior to some value ofn, say No. If the circle Iz I= ro
is in the ROC, then, x [n] ro-

n can be (absolutely) summed up or, equivalently, the
Fourier transform of x [n] ro-

n converges.
Since x [n] is right-sided, the term x [n] multiplied by any real exponential sequence
which, with increasing n, decays faster thanro-

n can also be (absolutely) summed up.
This (more) rapid exponential decay will further alternate sequence values of n to
become unbounded since x [n] z -n = 0 for n < N1.
For right-sided sequences in general, the z-transform takes the form

-
X(z) = L x[n]z-n

n=N.

where N. is finite and may be positive or negative:

(23)

If N. is negative, then the summation in (23) includes terms with positive sources of
z which become unbounded as Iz 1- "". Consequently, for the right-sided sequences
in general, the ROC will not include infinity. For the particular class of"casual °"
sequences, however, N1 will be non negative, and, consequently, the ROC will extend
to infinity.

°A signal is often referred to as "casuaf' if it corresponds to the impulse response of
a casual system, i.e., is zero for t < 0 (continuous time), or, n < 0 (discrete time).
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P. 5: Ifxlnl is a left-sided sequence and i/the circle I%1= r. is in the ROC, then. all
values of%for which 0 < I%I< r. will also be in the ROC
In general, for left-sided sequences, from the definition of the z-transform, the
summation for the z-transform can be written in the form:

N1

X(z) = L x[n] z-n
n;- ..

where N2 may be positive or negative.

(24)

If N2 is positive, then eqn. (24) includes negative powers of z, which become
unbounded as Iz I - O. Thus, for left-sided sequences in general, the ROC will not
contain z=O. For the particular class of left-sided sequences which are anti-casual
[i.e., x [n] = 0; n ~ 0, so that N2 in (24) is less than or equal to zero], the ROC will
contain z = o.

P. 6: Ifxlnl is two-sided and if the circle I %I=r, is in the ROC, then the ROC will
consist ofa rinK in the %-plane which includes the circle I%I=rp
The ROC for a two-sided signal can be examined by expressing x [ n ] as the sum of
a right-sided and left-sided signals:
The ROC for the right-sided component is a region bounded on the inside by a circle
and extending outward to (and possibly including) infinity.
The ROC for the left-sided component is a region bounded on the outside by a circle
and extending inward to, and possibly including, the origin.
The ROC for the composite signal includes the intersection of the above two zones.
As illustrated in Fig. D.3, the overlap (assuming it exists) is a ring in the z-plane.

D.5. The Invene z-Transform

With the "inverse %-transform", we seek to determine a sequence when its z-transform is
known. Expressing, as dealt with earlier, the z-transform as the Fourier transform of an
exponentially weighted sequence, i. e.,

X (r eic.l)= S{x [n] r -n}

where Iz I= r is in the ROC.

(25)
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(A)

e

1m
(B)

Z-plane

(C)

Re

or

Figure D.3. (A) ROC for a right-sided sequence; (B) ROC for left-sided sequence; (C) The
intersection ofthe ROC's in (A) and (B) represents the ROC for a two-sided sequence
that is the sum of a right-sided and left-sided sequences.
(Adapted after Oppenheim et a\., 1983)

Meantime, applying the inverse Fourier transform to both sides of (25),

x[n] r -n = S -1 { X (r e jlol ) }

(26)
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Using the inverse Fourier transform expression, it follows that

If· .x[n]=r n- X(re'''')e,,,,ndw
21t 2n

or

If' .x[n] = - X(re'''')(reJ",n)dw
2 1t 2n (27)

Changing the variable ofintegration from wto z. With z = r~'" and r fixed, then d z = j r ~=
j w dw or dw = (1/j) zo\ dz. The integration in (27) is over a 2 1t interval in w which, in
terms ofz, corresponds to one interval around the circle Iz I= r. Consequently, in terms of
an integration in the z-plane, equation (27) can be written as

x[n] =_1_. pX(z)zn-\dz
21tJ

(28)

where the p denotes an integral about counter clockwise closed circular contour centered at
the origin and with radius r. The value of r can be chosen as any value for which X(z)
converges.

Equation (28) is the formal expression for the inverse z-transform and is the discrete­
time expression for the inverse Laplace transform. Formal evaluation of the inverse transform
integral Eqn. (28) requires the use ofcontour integration in the complex plane.

There are however, a number ofalternative procedures for obtaining a sequence from
its z-transform. As with Laplace transforms, one particular useful procedure for rational z­
transforms consists ofexpanding the algebraic expression into a partial fraction expansion and
recognizing the sequence associated with the individual terms.
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TABLE D.1. Some common z-transfonn pairs··

x (n) X(z) Region ofconvergence,
"ROC"

6(n) = {~ n=O
A1lz

n"O

All z (except 0 ifm > 0)
6 (n - m) z-m

or All z (except 00 ifm < 0)

u(n) = {~ n~O z- Iz I> 1
n<O z-1

u(-n-l) z
Izl<1--

l-z -I

a °u(n) z
I z I> I a I-

z-a

-aOu(-n-l) z
Izl<lal-

z-a

na °u(n) az I z I> I a I
(z -a)2

-naOu(-n) az
Izl<lal

(z -a)2

-naOu(-n-l) az I z I< I a I
(z -a)2
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x (n)

sin(nw) u(n)

a n cos (nw) u(n)

X(z)

zsinw

Z2 - 2z cos w + 1

az sin w

Z2 - 2 az cos w + a 2

z(z - a cos w)

z2-2azcosw+a2

Region of convergence,
"ROC"

I z I> 1

IzI> IaI

Izl>lal

.. where u(n) is the unit-step time series.

TABLE D.2. Fundamental properties of the z·transform

Property

1. Linearity

x (n)
y (n)

a x(n) + f3y(n)

x (z)
V (z)

a X(z) + f3 V(z)

Region of
convergence,
"ROC"

2. Time-shift x(n - m) z -m X(z)

~

3. Convolution E x(k)y(n -k) X(z) V(z)
k ... --

1
4. Product x(n) y(n) -. fe X(w)

21t1

v( :) w-'dw



www.manaraa.com

Property x (n)
y(n)

X(z)
Y(z)

Region of
convergence,
"ROC"
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5. Time-transpose x (-n)

6. Time- ox (n)
multiplication

.
7. Correlation L x(k)y(n +k)

k=-·

dX(z)-z--
dz

8. Exponential
multiplication

D.6. Problems

a nx(n) X(a -I Z)

1. Find the regions of convergence concerning the z-transform properties given in
Table D.2 above.

2. Find X(z) and the corresponding regions of convergence for the following time
series:

(i)

(ii)

(iii)

X() (n +k - I)! n ()n = a u n
n!(k -I)

where u(n) is the unit-step time series.

X(n) = a Inl

x(n) =t
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A
Acceleration wave, 241-246, 250-253
Acousto-ultrasonics, 422-429
Actuator, 406
Adiabatic sheering, 46-48
Aluminum, 14, 15, 18, 19,21,23,25,26,

27,385
Associative material (and non-associative

materia!), 52

B
Biaxial loading

Dynamic, 28
Bifurcation, 60-62, 64-70
Birth-and-death model, 398-400
Boltzmann's superposition principle,

228-231
Boundary value problem

Viscoelastic, 254-284

C
Characteristics

of the equation of motion, 130,
132-137

Classification methodology, 422, 423,
429-456

Coincidence lattices, 384
Combined stress, 156-165
Composite, 295-372
Conservative loading, 52
Copper,21,22,23,25,26,46,385
Correspondence principle, 231-234
Crack, 393-400
Cyclic loading, 18, 19

D
Damage, 339-372
Deformation

Dynamic, ofmetals, 11-48
Discrete-time, 181-215
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Dissipation, 217-219
Dwell time, 18
Dynamic

behaviour
ofmetals, 11-48
of heterogenous materials,

295-401
biaxial loading, 28
plastic behaviour, 124-166
system identification method,

179-215
thermoelasticity, 166

E
Electro-rheological fluid, 417-419
Equilibrium second-order modulus, 239
Equilibrium tangent modulus, 239

F
Fibre-reinforcement, 295-371
Fracture, 393-400
Frequency response function, 183
Friction

Internal, 217-219

G
Gold,385

H
Heterogeneous material, 295-371

I
Impact, 137-141,441-456
Input

Pulse, 224
Sinusoidal,221-224

Instability
Plastic, 52-81

Instantaneous second-order modulus,
239

Instantaneous tangent modulus, 238
Intelligent material, 404-421
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Internal
damage,: 388-400
friction, 217-219

Iron, 26, 27
Inter-elemental

bonding, 385, 386, 392, 393
boundary, 384,391-393
topology, 384

Inverted utility function, 248, 249

J
Jump test, 16, 22

K
Kolsky bar, 13, 16,20,22,23,25

L
Lead, 26, 27
Loading

Biaxial, Dynamic, 28
Conservative, 52
Cyclic, 18, 19
Dynamic, ofmetals, 11-48
Shock, 32, 33, 246-253
Static, 12
Sub-static, II

Loading/unloading boundary, 125, 141­
150

Localization effect, 52-81

M
Magnesium, 21, 22, 23, 24, 25
Material

Associative (and non-associalive),
52

operator, 373,384,385, 392,393
Memory, 406
Mesodomain, 379
Metallurgical

effects, 30-48
Microelement, 379
Micromechanics, 295-372, 373-402

Modulus
Equilibrium Second-Order, 239
Equilibrium Tangent, 239
Instantaneous Second-Order, 239
Instantaneous Tangent, 238

N
Nonlinear

viscoelastic wave propagation,
234-254

Normalization tree, 447-456

o
Optical fibre, 411, 412

p

Pattern recognition, 422, 423, 429-456
Piezoceramic, 407, 408
Piezoelectric, 407-411
Plastic instability, 52-81
Processor, 406
Probabilistic micromechanics

(see stochastic micromechanics)
Pulse input, 224

R
Random walk, 394-398
Reinforcement

Fibre, 295-371
Runge-Kutta method, 208, 212

s
Sensor, 406
Shape memory alloy (SMA), 412-415
Shape memory polymer, 416, 417
Sheer

bands (a/so shear banding), 52
Sheet molding compound (SMC), 321­

327
Shock

loading, 32-43, 246-253
wave, 32-43, 246-253

Sinusoidal input, 221-224
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Smart material (see intelligent material)
Split Hopkinson pressure bar (see Kolsky
bar)
Steel, 20,21,22,28,30,46
Stiffitess, 339-372
Stochastic micromechanics, 373-402
Strain

aging, 26
Strain-rate

effects, on metals, 11-48,58-75
history, 17, 18, 22
sensitivity, 17, 20

Stress-relaxation, 435-441
Stress

Combined, 156-165
Structural element, 378-380, 384, 390,

391
Superposition principle (see Boltzmann's

superposition principle),
System characteristic function, 184-215

T
Temperature

effects, 58-62
Thermoelasticity

Dynamic, 166
Thermo-Elasto-Viscoplastic Solid,

70-75
Thermoviscoelastic boundary value

problem, 277-284
Titanium, 22
Transform operator

(see Material operator)

U
Unloading problem, 141-150

V
Viscoelastic boundary value problem,

254-284

477

Viscoelastic wave, 217-254
Viscoplastic solid

Thermo-elasto, 70-75

w
Wave

Acceleration, 131, 241-246, 250­
253

Coupled (also partially coupled),
125

Elastic, 82-123
equation, 228-231
dilatational, 89
Inelastic, 84, 85
Irrotational, 91-96
propagation,

in bounded elastic solids,
105-115

in semi-infinite media,
96, 224-228

in unbounded elastic
solids, 87-91

reflection (also refraction), 103-
105,109-111

rotational, 89, 91-96
Shock, 150-156, 246-253
Surface, 98-103
Viscoelastic, 217-254

z
z-transform

Definition of, 458
Properties of, 459-465, 470-473
Regions of convergence, 465-468
Inverse, 468-470

Zinc, 21, 23, 25
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CUMULATIVE SUBJECT INDEX

A
Acceleration wave, II: 241-246, 250-253
Acousto-ultrasonics, II: 422-429
Actuator II: 406
Adiabatic sheering, II: 46-48
Admissibility, I: 141
Alloys

Creep of, I: 244-257
Stress-relaxation of, I: 257-265

Aluminum, II: 14, 15, 18, 19,21,23,25,
26,27,385

Anelastic strain, I: 259
Associative material (and non4ssociative

materia!), II: 52

B
Biaxial loading

Dynamic, II: 28
Bifurcation, II: 60-62, 64-70
Birth-and-death model, II: 398-400
Boltzmann's superposition principle,

I: 286, 302,326
II: 228-231

Boundary Value Problem
Elastic, I: 171-203
Plastic, I: 224-235
Viscoelastic, II: 254-284

C
Cauchy's

deformation tensor, I: 87
first equation ofmotion, I: 53, 167
first fundamental theorem, I: 94
second equation ofmotion,

I: 55, 157
second fundamental theorem, I: 96
stress (see also stress tensor),

1:38,39,57,59,63,209
Characteristics

of the equation ofmotion,
II: 130, 132-137

479

Christoffel symbol, I: 291-293
Classification methodology, II: 422, 423,

429-456
Clausius-Duhem inequality, I: 127, 131,

141, 148, 149, 159, 160
Clausius inequality, I: 148
Clausius integral, I: 148
Cofactor, I: 278
Coincidence lattices, II: 384
Combined stress, II: 156-165
Compatibility condition, I: 101, 102
Compliance,

Complex, I: 95, 299, 310
Loss, I: 295, 296,299,300
Storage,l: 295,299,300

Composite, II: 295-372
Conservation

ofenergy, I: 125, 127
ofmass, I: 40

Conservative loading, II: 52
Constitutive equation, I: 137, 217, 218,

249-252
Continuity

ofmass, I: 41
ofmomentum, I: 42, 55

Continuum, I: 38, 39, 150
Contravariant

physical component, I: 378, 379
tensor, I: 16, 369,370, 380

Copper, II: 21, 22, 23, 25, 26, 46, 385
Correspondence principle, II: 231-234
Covariant

derivative, I: 379, 380
physical component, I: 378, 379
tensor, I: 16,369

Crack, II: 393-400
Creep

recovery, I: 280, 289
response, I: 244-257, 259, 274,

277, 279, 280, 284-286,
289, 290, 299, 301, 306,
317,319

ofmetals, I: 244-256
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Curl of a vector, I: 30
Curvilinear tensor, I: 362-386
Cyclic loading, II: 18, 19

D
Damage II: 339-372
Deformation

Definition of, I: 85, 86, 88
Dynamic, ofmetals, II: 11-48
Elastic, I: 205
Homogeneous, I: 98
Inelastic, I: 205
Isochoric, I: 97
maps, I: 254-256
rate, I: 108
Rigid, I: 97
Simple extension, I: 98
Simple sheer, I: 99

Delta function, I: 388·391
Determinant, I: 16,32, 365-368
Differential geometry, I: 284
Dilatation, I: 94,97, 169
Discrete-time, II: 181-215
Dissipation, II: 217-219
Divergence of a vector, I: 29
Dwell time, II: 18
Dynamic

behaviour
of heterogenous materials,

II: 295-401
ofmetals, II: 11-48

biaxial loading, II: 28
plastic behaviour, II: 124-166
system identification method,

II: 179-215
thermoelasticity, II: 166

E
Electro-rheological fluid, II: 417-419
Elastic

boundary value problem,
I: 171·203

deformation, I: 205

response, I: 158-204
Elasticity

Linear, I: 161-170
Nonlinear, I: 159-161

Elastic-plastic response, I: 205-243
Entropy, I: 1I8, 142
Equilibrium second-order modulus, II: 239
Equilibrium tangent modulus, II: 239

F
Fading memory, I: 140, 145
Fibre-reinforcement, II: 295-371
Fourier

spectrum (in viscoelasticity),
1:293,296,299,306,310,
314,315,319

transform, I: 405-414
Fracture, II: 393-400
Frequency

response function, II: 183
spectrum (in viscoelasticity),

I: 304 305, 325
Friction

Internal, II: 217-219

G
Gold, II: 385
Gradient

of deformation, I: 86
ofa scalar, I: 28
ofa vector, I: 29

B
Hardening rule, I: 215, 219, 220
Heaviside function, I: 388, 390, 391
Heterogeneous material, II: 295-371
Hereditary response, I: 275
Hysteresis loop, I: 207

I
Impact, II: 137·141, 441-456
Index, I: 12
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Indicial notation, I: 12-15
Integral transform, I: 392-414
Input

Pulse, II: 224
Sinusoidal, II: 221-224

Instability
Plastic, II: 52-81

Instantaneous second-order modulus,
II: 239

Instantaneous tangent modulus, II: 238
Intelligent material, II: 404-421
Internal

damage, II: 388-400
friction, II: 217-219

Iron, II: 26, 27
Inter-elemental

bonding, II: 385, 386, 392, 393
boundary, II: 384, 391-393
topology, II: 384

Inverse, I: 32
Inverted utility function, II: 248,249
Isoclinic lines, I: 61,62,63
Isotropic

hardening, I: 216,217
points, I: 62, 64

J
Jacobean, I: 16, 86
Jump test, II: 16, 22

K
Kinematic hardening, I: 216, 217, 249
Kolsky bar, II: 13, 16,20, 22, 23,25
Kronecker delta, I: 19,362-364

L
Laplace transform, I: 393-405
Laplacian operator, I: 30, 383
Lead, II: 26, 27
Loading

Biaxial, Dynamic, II: 28
Conservative, II: 52
Cyclic, II: 18, 19

481

Dynamic, ofmetais, II: 11-48
function, I: 215
Quasi-static, I: 273-355
Shock, II: 32-43, 246-253
Static, I: 38-80, 137-264

II: 12
Sub-static, II: II

Loading/unloading boundary,
II: 125, 141-150

Localization effect, II: 52-81

M
Magnesium, II: 21,22,23,24,25
Material

Associative (and non-associative),
II: 52

continuum, I: 150
derivative, I: 107
frame indifference, Principle of,

1:11,138
invariance, I: 161, 163
objectivity, I: 130
operator, II: 373, 384, 385, 392,

393
symmetry, I: 130, 164, 165
time-rate, I: 107

Memory, II: 406
Mesodomain, II: 379
Metals

Creep of, I: 244-257
Stress-relaxation of, I: 257-265

Metallurgical effects, II: 30-48
Metric tensor, I: 372-374
Microelement, II: 379
Micromechanics, II: 295-372, 373-402
Mixed components (ofa tensor),

I: 17,281
Modulus

Bulk, I: 168, 169
Equilibrium, I: 282
Equilibrium Second-Order, II: 239
Equilibrium Tangent, II: 239
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Instantaneous Second-Order,
II: 239

Instantaneous Tangent, II: 238
Complex, I: 308,309,310
Shear (or rigidity), I: 169

Motion
Analysis of, I: 107
Lagrangian and Eulerian, I: 85

N
Nonlinear

viscoelastic wave propagation,
II: 234-254

Normalization tree, II: 447-456

o
Optical fibre, II: 411, 412

p
Pattern recognition, II: 422, 423, 429-456
Piezoceramic, II: 407, 408
Piezoelectric, II: 407-411
Plastic

behaviour, I: 205
instability, II: 52-81
potential function, I: 230
strain, I: 259

Poisson's ratio, I: 166, 168
Principle of

equipresence, I: 140, 141
fading memory, I: 141
positive internal production
of energy, I: 144

Processor, II: 406
Probabilistic micromechanics

(see stochastic micromechanics)

Q
Quasi-static behaviour (or loading),

I: 273-355

R
Random walk, II: 394-398

Relative tensor, I: 376, 377
Relaxation-

frequency, I: 305
limit, I: 261
time, I: 302, 306, 307, 310, 315,

323
Reinforcement

Fibre, II: 295-371
Response behaviour

Creep, ofmetals and alloys,
I: 244-256

Elastic, I: 159-204
Elastic-Plastic, I: 206-243
Stress-relaxation, of metals
and alloys, I: 256-264
Viscoelastic, I: 273-355

Retardation-
frequency, I: 304
time, I: 302, 303, 306, 307, 310,

315,320
Rheology, I: 328, 329
Rotating disc, I: 175-182
Rotation tensor, I: 91, 92
Runge-Kutta method, II: 208, 212

S
Sensor, II: 406
Shape memory alloy (SMA), II: 412-415
Shape memory polymer, II: 416, 417
Sheer

bands (also shear banding), II: 52
lines, I: 223

Sheet molding compound (SMC),
II: 321-327

Shifting property, I: 301
Shock

loading, II: 32-43, 246-253
wave, II: 32-43, 246-253

Sigmoidal creep response, I: 247
Simple Materials, I: 139, 146
Sinusoidal input, II: 221-224
Slip line field, I: 232, 233
Smart material (see intelligent material)
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Solid disc, I: 179
Split Hopkinson pressure bar (see Kolsky

bar)
Steel, II: 20, 21, 22, 28, 30, 46
Step function (see Heaviside junction)
Stiffuess, II: 339-372
Stochastic micromechanics, II: 373-402
Strain

aging, II: 26
Strain-rate

effects, on metals, II: 11-48,58-75
history, II: 17, 18,22
sensitivity, II: 17, 20

Stress
Combined, II: 156-165
Piola-Kirchhotrs, I: 75, 76, 149
plane, I: 170
principal directions, I: 56, 223
principal planes, I: 56
principal values, I: 56
singularity, I: 158
symmetry, I: 53
tensor, I: 38, 39, 57, 59, 63
trajectories, I: 59, 60
vector, I: 44

Stress-relaxation, I: 257-266, 280, 282,
283,290,291,292,299,302,304­
306,310,315,322,323
II: 435-441
ofmetals, I: 256-264

Structural element, II: 378-380, 384, 390,
391

Superposition principle (see Boltzmann 's
superposition principle)

System characteristic function, II: 184-215

T
Temperature

effects, II: 58-62
Tensor

Cartesian, I: 11-36
Curvilinear, I: 362-386

Thermomechanical continua, I: 118

483

Thermodynamics
admissible process, I: 160
constitutive equations, Derivation
of, I: 329-334
equilibrium, I: 124
deformation process, I: 129
First law of, I: 119, 127
Laws of, I: 128
Restrictions imposed by, I: 139
Second law of, I: 128, 130

Thermoelasticity
Dynamic, II: 166

Thermo-Elasto-Viscoplastic Solid,
II: 70-75

Thermorheologically complex material,
I: 351-355

Thermorheologically simple material,
I: 334-351

Thermoviscoelastic boundary value
problem, II: 277-284

Thermoviscoelasticity, I: 327-355
Time-

dependency, I: 273-355
memory, I: 273-355

Titanium, II: 22
Torsion, I: 185, 186, 191, 192, 194
Trace, I: 31
Traction vector (see stress vector)
Transform

Laplace, I: 393-405
Fourier, I: 405-414

Transform operator
(see Material operator)

U
Uniqueness of solution, 173
Unloading, I: 207

II: 141-150

v
Vector

Curl of, I: 30, 383
Divergence of, I: 29, 382
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Gradient of, I: 29
Velocity field, I: 222
Viscoelastic boundary value problem,

II: 254-284
Viscoelasticity, I: 273-355
Viscoelastic wave, II: 217-254
Viscoplastic solid

Thermo-elasto, II: 70-75
Vorticity, I: 108, 109

w
Wave

Acceleration, II: 131, 241-246,
250-253

Coupled (also partially coupled),
II: 125

Elastic, II: 82-123
equation, II: 228-231
dilatational, II: 89
Inelastic, II: 84, 85
Irrotational, II: 91-96
propagation,

in bounded elastic solids,
II: 105-115

in semi-infinite media
II: 96, 224-228

in unbounded elastic
solids, II: 87-91

reflection (also
refraction), II: 103-105,
109-111

rotational, II: 89, 91-96
Shock, II: 150-156, 246-253
Surface, II: 98-103
Viscoelastic, II: 217-254

Work-hardening, I: 207, 220, 221

y
Yield

condition, I: 208, 210, 225, 226,
227,229,231,233,235

curve, I: 213,214
function, I: 208
general function, I: 230, 232
quadratic condition, I: 227, 228
surface, I: 211, 212, 214

z
z-transform

Definition of, II: 458
Properties of, II: 459-465, 470­

473
Regions ofconvergence,

II: 465-468
Inverse, II: 468-470

Zinc, II: 21, 23, 25
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