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INTRODUCTION

During the past four decades, the research efforts of investigating the mechanical response
behaviour of engineering materials, under various types of loading, have been ultimately
significant. The interpretations and applications of mechanical response data have simulated
powerful advances in research interest and in engineering practice. In this context, widespread
research work on the subject has established well-profound concepts, principles and results.

The purpose of this monograph is to introduce the principles of the mechanical
response of various classes of engineering materials, the identification and interpretation of
the mechanical response data, properties evaluation, and, whenever possible, application of
the data to structure-properties relationships. The monograph deals with the subject matter
in two volumes. Volume I, contains eight chapters and three appendices, concerns itself with
the basic concepts as pertain to the entire monograph, together with the response behaviour
of engineering materials under static and quasi-static loading, Thus, Volume I is dedicated to
the introduction, the basic concepts and principles of the mechanical response of engineering
materials, together with the pertaining analysis of elastic, elastic-plastic, and viscoelastic
behaviour. Volume II, consists of ten chapters and one appendix, concerns itself with the
mechanical behaviour of various classes of materials under dynamic loading, together with
the effects of local and microstructural phenomena on the response behaviour of the material.
Volume II contains also selected topics concerning intelligent material systems and pattern
recognition and classification methodology for the characterization of material response
states. In the majority of the presentation, the two volumes of the monograph treat the
considered subjects in a generalized three-dimensional fashion.

Static loading?
In the case of static loading, one has, at any particular instant of time, a condition of
static equilibrium. A conventional static tensile test of a material specimen within its
linear elastic range would be a typical example of this situation.

Quasi-static Loading?
A quasi-static deformation process, although it is, in general, time-dependent, is in
reality a sequence of states of static equilibrium. Typical illustrations of a quasi-static
deformation process are the quasi-static creep and relaxation processes of engineering
materials.

Dynamic Loading?
The deformation process that occurs in the material under dynamic loading differs to
a large extent from those due to static or quasi-static loading. When the material is
subjected to dynamic loading, e.g., a very high rate impulse, the portion of the body



that contains the point of impact is stressed instantaneously, while the other portions
may not have yet experienced the effect of the imposed impact. This is due to the fact
that the imposed dynamic effect will require time to travel, i.e., to propagate, through
the body. Such propagation of the dynamic effect through the body occurs with a
particular velocity of propagation which would depend on the specific characteristics
of the material and the boundary conditions at the instant of time considered. This
phenomenon is referred to as “wave propagation”. That is, the dynamic deformation
of materials, under dynamic loading, involves stress wave propagation, whereby the
inertia and inner kinetics of the material specimen play important roles.

At strain rates of the order 10 to 10® 5™, the creep behaviour of the material is the
primary consideration and creep laws are used to describe the mechanical behaviour. At
higher rates, e.g., in the range of 10 to 102 s, a uniaxial test, or a quasi-static stress-strain
curve obtained from a constant strain-rate test is used to describe the material behaviour.
Although the quasi-static stress-strain curve is often treated as an inherent property of the
material, it is a valid description of the material only at the strain rate at which the test was
conducted. At higher strain rates, the mechanical response of the material may change, and
alternate testing techniques have to be used. The range of strain rates from 10 to 10 s™ is
generally referred to as the intermediate or medium strain-rate regime. Within this regime,
strain-rate effects become a consideration in most materials (e.g., metals), although the
magnitude of such effects may be quite small. Strain rates of 10° s or higher are generally
treated as the range of high strain-rate response. It is within the high strain-rate range (10° s
or higher) that inertia and wave-propagation effects become important in interpreting
experimental data. At these high rates of strain, care must be taken to distinguish between
average and local values of stress and that may be the result of one, or more, high-intensity
stress wave propagating through the material. At strain rates of 10° s or higher, we are
generally dealing with “shock waves” propagating through the material. At these high rates,
there exists a transition from nominally isothermal conditions to adiabatic conditions.

In the mechanics of deformable media, we deal with physical events, e.g.
deformation and flow, that occur and evolve, in both space and time, independent of any
particular coordinate system that may be used to observe them. In a proper mathematical
description, such events and their governing laws are expressed in terms of -tensorial
quantities. The invariance of tensors under coordinate transformation highlights a principal
reason for employing tensor calculus in the study of the mechanics of deformable media.
When transformation is carried out from one homogeneous (rectangular) coordinate system
to another, the resulting tensors are identified as “Cartesian tensors”. However, in dealing
with tensor transformation between general "curvilinear" coordinate systems, the
pertaining tensorial quantities are referred to as “"Curvilinear” or "General” tensors. In
Chapter 1, the reader is introduced to Cartesian tensors. Curvilinear tensors, however, are
considered in Appendix A (Volume 1).

Two mechanical approaches are generally considered in the study of phenomena and



3

problems concerning the mechanics of deformable media, i.e., the “microstructural’ approach
and the “continuum mechanics” approach.

In the “microstructural” approach, the macroscopic medium is considered to consist
of a large number of structural elements. Such elements are assumed to be in continuous
interaction with each other, and, hence their individual responses are seen to be mutually
inter-dependent. The behavior of a statistical ensemble of such elements may be studied using,
for instance, statistical or stochastic mechanics.

Conventionally, however, the description of material behavior is based on “continuum
mechanics” models that generally refer to homogeneous media. In the “continuum
mechanics” approach, the actual microstructure of the medium is disregarded and the medium
is pictured as a “continuum’ without gaps or empty spaces. Hence, the configuration of the
assumed continuous medium would be described by a continuous mathematical model whose
geometrical points are identified with material particles of the actual physical medium. The
aim of Chapter 2 is to provide the reader with a concise introduction of the basic assumptions
and principles of Continuum Mechanics with an emphasis on those specifically used in the
remainder of the book.

As mentioned earlier, engineering materials, when subjected to external loading,
experience deformation and flow that evolve in space and time. Thus, in Chapter 3, we
first consider the kinematics of involved deformation in the continuous material body and
the determination of the pertaining strain by adopting a number of conventional measures.
Second, we analyze the relationships between the sequential configurations that the parts of
a “continuous” material body may acquire with the passage of time. Subsequently, in
Chapter 4, we attempt to study the restrictions that classical thermodynamics impose on the
theory of deformation of solids, and to seek information concerning the thermodynamics of
continuous media.

Different materials of the same geometry may respond differently under identical
external effects. Such difference in response is often attributed to the inherent constitution
of the material. Consequently, the response behaviour of a particular material, or of a
class of such material, is described mathematically by so-called "constitutive relations".
These constitutive equations define the response behaviour of idealized media within a
specific range of external effects. Accordingly, they only approximate the response
characteristics of real materials, within a specified domain of actual service conditions.
Constitutive relations establish, under certain physical and thermodynamical restrictions,
the connection between the stimuli acting on the material specimen and the evolution of
the occurring response. Thus, Chapter 5 attempts to guide the reader throughout a transition
between the general concepts and principles, which are presented in Chapters 1 to 4, and the
task of establishing the response behaviour of engineering materials, as presented in Chapters
6 to 15. In this, the elastic response behaviour of the material is dealt with first.



Elastic behaviour of an engineering material depends only upon the stress level in
the material, meanwhile, it is not strain- or time-history dependent. Further, an elastic
deformation process is described, from a thermodynamical point of view, as dealt with in
Chapter 5, to be a reversible process. Thus, upon the removal of the load, a complete
recovery to the undeformed configuration would take place. An elastic response of an
engineering material is formulated within the realm of “classical elasticity”". Such an elastic
response could be linear or nonlinear pending on the form of the constitutive law that is
used in its description. In this context, Chapter 6 deals first with the general nonlinear
elastic behavior, then it introduces the required assumptions and postulates in order to reduce
such response to the idealized case of linear (perfect) elastic behavior,

Two ways in which the behaviour of real solids deviates from a perfect elastic one:

First, the stress-strain relationship may be nonlinear and may also depend on the
loading path. Further, the pertaining stress-strain curve may show hysteresis loops.
Thus, the resulting stress-strain relationships may not be “uni-valued”.

Second, the stress-strain relationship may be time-dependent. Thus, phenomena such
as creep and stress-relaxation could become of importance, in determining the
mechanical response of the real solid.

In general, “inelastic” solids show the above mentioned two types of deviation from
a perfect (linear) elastic behavior. That is, the stress-strain relation is both time-dependent and
nonlinear. Thus, inelastic deformation depends, in general, as dealt with in Chapter 7, on
the stress level and both the strain- and time-history of the material. A transition to the
important subject of creep and stress-relaxation of metallic systems is dealt with at the end
of Chapter 7.

With the recent advances in material science and the parallel extensive industrial
demands on advanced industrial materials such as high polymers and polymeric base
composite systems, the identification of the viscoelastic response of engineering materials has
gained recently a strong momentum in the realms of industrial techniques and applications.

High polymeric materials are organic substances of high molecular weight, the
technical importance of which depends on their particular microstructure. This class of
materials may include, for example, rubber in its various forms, synthetic rubber-like
materials, commercial plastics, and natural and synthetic textile fibres. Other few examples
of a viscoelastic material would include a wide range of inorganic polymeric systems such as
silicones and glass resins, constituents of polymeric base systems, natural fibres such as wood
and the by-products of such fibres as, for instance, paper and board, building materials such
as concrete, and a large class of biomaterials, among others. These materials are “tine-
dependent’ in response and possess a "time-memory". Attempts to characterize the behaviour
of such materials under the action of external loading, consequently, gave rise to the science
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of “rheology” within which the phenomena now labelled "viscoelasticity" is well defined and
intended to convey mechanical behaviour combining response characteristics of both an
elastic solid and a viscous fluid. A viscoelastic material is, thus, characterized by a certain
level of rigidity of an elastic solid body, but, at the same time, it flows and dissipates energy
by frictional losses as a viscous fluid. Chapter 8 treats the subject of viscoelasticity of
engineering materials in a quite comprehensive manner. The important subject of
thermoviscoelasticity is also dealt with in Chapter 8.

The significant importance of the subject of the dynamic response of engineering
materials has, also, gained in recent years a strong momentum in a wide scope of engineering
practice. Dynamic properties of materials appear to be receiving more attention at present as
a result of such current applications as space structures, machine components, advanced
aircraft, and nondestructive evaluation of engineering materials and structures. Familiar
applications of the study of dynamic deformation of engineering materials may include, for
instance,

- identification, modelling, and prediction of the response behaviour of different

classes of engineering materials under the effect of rapidly changing loads.

- development of new materials that can perform favourably from a design point
of view when subjected to dynamic loading.

- study of the dynamic response of engineering members and structures with the
inclusion of the dynamic behaviour of the pertaining materials.

- identification of the response of materials during dynamic fabrication
processes, e.g. metal forming operations under rapidly changing loads,
explosive welding and compaction operations.

- development of nondestructive evaluation techniques that are based on
dynamic-effect phenomena, e.g., acoustic emission, ultrasonics and acousto-
ultrasonics.

- shock synthesis to produce new elements or compounds.

- study of crash worthiness.

- development of anti-collision shielding for space vehicles.

- traditional and novel armour and anti-armour concepts for military
applications.

In Chapter 9, we introduce the subject of the response of metallic materials to
dynamic loading. In this, the distinction of higher rates from lower rates is made not on the
basis of time-dependence of the material behavior, as we dealt with, for instance, in Chapter
8, but rather on the necessity of including inertia forces in the pertaining dynamic analysis.

Chapter 10 deals with the subject of plastic instability and localization effects in
engineering materials. In this context, a decrease in stiffness due to geometrical change
and/or material softening caused by deformation is responsible for the occurrence of instability
phenomena in engineering materials within the plastic range; i.e., beyond the yield point.
Such phenomena manifest themselves in various ways; e.g., buckling, bulging, necking and
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shear banding. Once such instabilities are started, they tend to persist and the stiffness of the
specific cross-sectional area of the specimen decreases; therefore deformation intensifies
locally and eventually leads to final collapse and/or failure. Because the occurrence of such
instabilities is an important precursor to collapse or failure, computational prediction of the
onset and of the augmentation of these instabilities is essential and indispensable in
understanding the ultimate strength of engineering materials, and in predicting and improving,
for instance, the formability of ductile solids.

In rigid body dynamics, it is assumed that, when an extemal force is applied to any one
point of the body, the resulting effect sets every other point of the body instantaneously in
motion, and the applied force can be considered as producing a linear acceleration of the
whole body, together with an angular acceleration about its center of gravity. In the theory
of deformable media, however, the body is considered to be in equilibrium under the action
of the external applied forces, and the occurring deformations are assumed to have reached
their equilibrium static values. This assumption could be sufficiently accurate for problems
in which the time between the application of the force and the setting up of effective
equilibrium is short compared with the time in which the observation is made. Meanwhile, If
the external force is applied for only a short period of time, or it is changing rapidly, the
resulting effect must be considered from the point of view of “stress wave” motion. Thus,
when a localized disturbance is applied suddenly into a medium, it will propagate to other
parts of this medium. The local excitation is not detected at other positions of the medium
instantaneously, as some time would be necessary for the disturbance to propagate from its
source to other parts of the medium. This simple fact constitutes a general basis for the
interesting subject of "wave propagation”. In the particular case, when the suddenly applied
disturbance is mechanical, e.g., an impact force, the resulting waves in the medium are due
to mechanical stress effects and, thus, these waves are referred to as "mechanical stress
waves", or simply “stress waves”,

The propagation of stress waves in solids can be divided into two categories,
“elastic” and “inelastic”. When loading conditions result in stresses below the yield point,
solids behave elastically and obey Hook's Law, and consequently stress waves are “elastic”.
As the intensity of applied loading is increased, the response of the material is driven out of
the elastic range to a possible inelastic behavior. The behavior here may involve large
deformation, internal heat generation, and often failure of the solid through a variety of
mechanisms. In this context, “plastic” waves can be propagated in a material, such as a
metal, which exhibits the phenomenon of yielding, when stressed beyond its proportional
limit. The subject of elastic wave propagation in engineering materials is dealt with in Chapter
11. Meanwhile, in Chapter 12, we consider the plastic response of engineering materials
under dynamic loading, whereby a rate-effect phenomenon might be occurring in the material
and the inertia forces would be included in the equation of motion.

Chapter 13 deals with the identification problem of the linear viscoelastic response
behaviour of an engineering material using dynamic experimental measurements. In this
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context, a linear viscoelastic material is considered as a dynamic system, whereby, a dynamic
system identification method is developed for the determination of the relaxation or creep
function of the material.

In most of viscoelastic material components, the presence of mechanical dissipation
can effectively change the nature of wave motion in them. In addition to the significant
mechanical dissipation that can occur in viscoelastic materials, it is well-recognized that these
materials are "dispersive". In view of the latter property, phase velocity of a wave
propagating in a viscoelastic material will depend on wave frequency. More specifically,
waves of high frequency will propagate in viscoelastic materials with a greater phase velocity
than if these waves have a low frequency. Consequently, a mechanical disturbance would
continually change in shape during its motion in a viscoelastic medium. Further, the
attenuation of high frequency waves in viscoelastic materials is greater than that of waves of
low frequency. In this context, Chapter 14 concerns itself with the phenomenon of wave
propagation in a viscoelastic solid and the associated with boundary value problem.

The current technology of the design and manufacturing of laminated and fibre-
reinforced composites is faced with problems essentially related to the inherent nature of the
mechanical response of the different constituents of the microstructure, the formation of
interfaces between such constituents and the evolution of the associated deformation
processes under loading. Optimal design of such material systems is becoming a very
progressive and challenging domain in both applied mechanics and material science. Thus, the
increasing use of such materials is inciting new developments to be made within the context
of macro- and micro-mechanical constitutive modelling, applications of such materials under
variable boundary conditions, experimental testing methods, computational methods of
analysis, and optimization. A new dimension of optimal design is being realized by building
new composite systems through direct tailoring of the microstructure, e.g., by judicious
reinforcement and mixing (hybridization) of the constituents of the microstructure within a
specific topological frame of reference and to satisfy the boundary conditions involved. In this
context, theoretical and experimental studies of the dynamic stress-strain relations of hybrid
composites have become significantly important. The increased interest in the subject matter
has been motivated recently by the increasing number of engineering applications and, as well,
by the contributions provided by such studies to a better understanding of the mechanisms of
deformation of such material systems when subjected to a dynamic loading environment. In
this, Chapter 15 reviews recent research efforts pertaining to the micromechanics of
polymeric fibre-composite systems, in general, and the optimization of the microstructure in
the case of short-fibre composite systems.

Chapter 16 deals with the microstructural or microscopic effects on the response
behaviour of structured material systems. In this, the material system is considered as a
heterogenous medium of actual microstructural elements. These elements are seen to exhibit
random geometric and physical characteristics. Due to the discrete nature of the
microstructure , the pertaining deformation process and its space- and time-evolutions are



8

considered to be stochastic in character. Thus, the overall response behaviour of the material
is formulated by the use of probabilistic concepts and statistical theory. An important feature
of the presented analysis is the introduction of a so called “Material Operator” of the
structured material system that contains in its argument the significant response characteristics
of the microstructure. These concepts are, first, utilized to formulate the outlines of a
stochastic micromechanical model for the deformation of a heterogenous elastoplastic system.
Then, the presented approach is extended to include the analysis of probable internal damage
mechanisms in this class of material.

Engineering materials are used either for their inherent structural strength or for
their functional properties. Often a feed back control loop is designed so that the
mechanical response of the material is monitored and the environment that is causing such
a response can be controlled. The evolution of a new kind of material termed “Intelligent”,
“Smart”, or “Adaptive” witnesses a significant development in materials science whereby
the referred-to smart material adapts itself to suit the environment rather than necessitating
to control the same. In this context, development in the area of materials research aims at
incorporating intelligence into engineering materials, enabling them to sense the external
stimuli and alter their own properties to adapt to the changes in the environment.
Chapter 17 presents ‘an overview” of possible forms of intelligence that may be
incorporated in these materials. Three basic mechanisms of intelligent materials, namely,
the sensor, processor and actuator functions are described. Implementation of these in the
microstructure of various materials, as well as associated algorithms and techniques are
illustrated. Different models, control algorithms and analyses are reviewed and their
potential applications in engineering materials are presented.

Chapter 18 deals with the design procedure of a computer-based expert system, in
conjunction with a non-destructive quantitative examination technique, e.g., acousto-
ultrasonics, for the identification of material response states.

Acousto-ultrasonics (AU) is a relatively new quantitative non-destructive examination
technique that combines aspects of conventional “Ulfrasonic” and “Acoustic Emission”
practices. It has been proven to be a suitable approach to quantify microstructural and
morphological states of materials and the related mechanical properties.

In the AU practice, the multi-interactions of the ultrasonic-wave with the material
microstructure usually result in complicated waveforms that are quite difficult to analyse. A
relatively new approach to the analysis of AU signals is the use of “Pattern-recognition and
Classification Methodologies”. In this approach, acousto-ultrasonic waveforms are identified
as belonging to a number of classes, where each class represents one of different states of the
tested material-property. For this purpose, each waveform is mathematically treated as a
multi-parametric entity, which is called a "pattern vector". Each component of such a pattern
vector represents a value of a parameter, called "feature", which is used for the identification
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of the AU signal. In the pattern-recognition practice, a computer-based pattern-recognition
system, labelled "Pattern-recognition Classifier", is designed on the basis of AU signals
pertaining to known material states of a particular tested response or material property. Two
case studies are being dealt with in Chapter 18, i.e., characterization of the stress-relaxation
response of a class of polymeric system, and the identification of residual impact properties
of such a system.

Throughout the text, generalized tensorial notations are used. For simplification,
however, the presentation has been limited, as much as possible, to Cartesian tensors.
Appendix A (Volume I), however, introduces to the reader the basics of “Curvilinear or
General tensors". This will prove to be particularly useful when reading Chapter 10.
Appendix B (Volume I) presents the definition and a summary of the properties of both the
delta and step functions. These functions are used frequently throughout the text. Meantime,
the important subject of integral transformation is dealt with in Appendix C (Volume I).
Appendix D (Volume II) deals with the definition and basic properties of z-transform. The
latter is employed throughout Chapter 13.

In the presentation, vectors and unindexed tensor quantities are indicated in general
by bold. The author has used majuscules to identify the undeformed configuration or the
original state of the material and minuscules to designate the corresponding deformed state.
Equations, figures and tables are numbered within the chapter; for example, Fig. 2.1 identifies
Fig. 1 of Chapter 2.
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CHAPTER 9

TRANSITION TO THE DYNAMIC BEHAVIOUR
OF ENGINEERING MATERIALS

9.1. Introduction

In this chapter, we introduce the subject of the response of metallic materials to
dynamic loading. In this context, if we consider the term “dynamic” to be solely characterized
as “time-dependent’, then we are in fact, as Lindholm (1962, 1964 and 1978) pointed out,
including the entire range of material performance. In other words, the commonly called
“static” or “quasi-static” deformation, e.g., creep and relaxation, is, in effect, “dynamic” or
“time-dependent”. The majority of us, however, may be more accustomed to thinking of
dynamic loading as associated with high loading rates or high deformation rates, with the
adjective “high” referring to rates above those achieved on a standard testing machine. In this,
the distinction of higher rates from lower rates is often made, however, not on the basis of
time-dependence of the material behaviour, but rather on the necessity of including inertia
Jforces in the pertaining dynamic analysis.

However, according to the laws of mechanics, see Chapter 2, the inertia forces are
generally included in the equations of motion, not in the constitutive relations of the material.
Further, one may often argue that the mechanisms which lead to time-dependency in the
constitutive equations for plastically deforming metals are not significantly different, if they
are not basically the same for low and high rates of loading, so that on the basis of the
constitutive relations alone, the distinction between static and dynamic loading may not be
easily made (e.g., Lindholm, 1962, 1964 and 1978).

9.1.1. LOADING REGIMES

Following Lindholm (1962, 1964 and 1978), and the presentation in the introduction
to this book, the following loading regimes of engineering materials may be identified:

- Sub-static regime. The lowest strain rate regime is that generally associated with
creep, where, as dealt with in Chapters 7 and 8, the specimen is deformed under
constant load or stress and the strain vs. time or creep rate is recorded. The counter
part of creep is the so-called “stress -relaxation” where the material specimen is
instantaneously strained to a specific strain level, which is maintained constant for the
entire duration of the experiment, and the stress vs. time or relaxation-rate is
recorded.
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- Static regime. The next regime is generally referred-to as static testing. The term
“static” is emphasized as it refers, in general, to stationary or time-independent
behavior. In this regime, the strain rate level should be maintained constant, and be
identified in conjunction with the test results. Here, standard hydraulic, or preferably
screw machines are used to apply the load.

- Dynamic regime. In this regime, inertia forces become important, and mechanical
resonance in the machine and the specimen must be considered. High strain rates from
approximately 50 5™ to 10* s* can be obtained with mechanical impact from a moving
mass, or by explosively generated pulses. At very high or “hypervelocity” impact, the
impacting projectile is usually accelerated by means of a light gas gun or explosive
generator. The analysis of the impact results must include the propagation of elastic
and plastic waves. At the highest impact velocities, “material compressibility”
becomes dominant and shock waves are developed. In this range, strain is not the
appropriate deformation indicator, but rather the time-dependent particle and wave
velocities are measured. Thus, the response of the material is considered within the
realm of wave propagation theory. In this chapter, we introduce some results
pertaining to the behavior of various metallic materials to high strain-rate loading,
meantime the subject of wave propagation in such materials are dealt with within the
scope of elastic wave propagation in Chapter 11, and in the context of dynamic
plasticity in Chapter 12.

The mechanical response of metals under high rates of loading may differ significantly,
from the corresponding response within the static regime. In this context, one may refer to
the early experiments by Hopkinson (1905) when he conducted a series of dynamic
experiments on steel and concluded that the dynamic strength was at least twice as high as
its low-strain-rate strength. In this context, significant increases in flow stress were reported
(e.g., Clifton, 1979) as strain rates of the order of 10* s are attained. Such significant rise in
flow stress leads some researchers to believe that there might be indeed a “limiting strain-
rate” at which the strength of the material might approach infinity. On the other hand,
however, it is known that steels undergo a ductile-to-brittle transition when the strain rate is
significantly increased.

Kolsky (1960) devised a method for measuring the stress-strain behavior at very high
rates of loading, without setting up stress waves in the material specimen. Applying his
method, Kolsky used specimens in the form of thin circular disks which were placed between
two steel bars of the same diameter as the discs along which stress pulses were propagated.
With this arrangement, the inertia of the specimen and plastic wave propagation in it could
be neglected, and since the wave propagation in the steel bars was elastic and amenable to
calculation, the stress-strain relation of the specimen could be determined; see, also, Davies
and Hunter (1963 ) and Kolsky (1965). An apparatus was subsequently developed by Kolsky
and Douch (1962) to carry out such measurements. In this method, short cylindrical metal
rods were fired from an air gun to impinge axially on a steel bar of the same diameter as the
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rods. The stress was measured by observing the amplitude of the elastic wave propagated in
the steel bar. Meanwhile, the plastic strains were measured by examining the specimens after
impact. By using a series of specimens fired over a range of velocities, dynamic stress-strain
curves were obtained. The “Kolsky bar” often referred-to as the “Split Hopkinson Pressure
Bar” is shown schematically in Figure 9.1.
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Figure 9.1. The “Kolsky bar”. (Source: Kolsky, H. (1960) Viscoelastic
waves, in Int. Symp. on Stress Wave Propagation in Materials, Ed. N.
Davids, Interscience Publishers, London, pp. 59-90. Reprinted with
permission).

Figure 9.2 is due to Kolsky (1965). It shows a comparison between the “dynamic”
stress-strain curve for annealed bars of aluminum [better than 99.5 per cent pure] obtained
according to the above described method, and the “static” stress-strain curve for similar bars
measured on a conventional testing machine. It is seen from the figure that there is a definite
strain-rate effect. Meanwhile, Figure 9.3 shows a correlation between the velocity of impact
and the magnitude of the permanent strain in the material.

As we discussed in Chapter 7, materials such as metals exhibit, in general, nonlinear
stress-strain relations and plastic yielding, and the stress-strain curve for unloading is generally
different from that for loading (see, also, Chapter 12). When the strain rate increases, the
deformation process changes gradually from fully isothermal to fully adiabatic, as there is not
enough time for the heat generated during the deformation process to escape out of the body.
This gives rise, in some cases, to adiabatic shear instabilities that have a profound effect on
the mechanical response of the material. This phenomenon is discussed in the following
chapter (Chapter 10) within the scope of plastic instability and localization effects.
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The rate dependency of the mechanical behavior of materials in general is a key factor
in understanding the fundamental mechanisms involved in the deformation process (Campbell,
1968). According to Campbell (1968), the realization of this fact for the cases of metals and
non-metals was delayed for two reasons: First, many common alloys are relatively rate-
insensitive at normal rates of strain, so that it is necessary to use experimental techniques
capable of measuring accurately small increments of stress and strain over a very wide range
of strain rate. Second, the fundamental processes of plastic flow in metals could not be
investigated thoroughly until adequate techniques were developed for observing dislocations
and their properties. In this context, the possibility of direct measurement of dislocation
velocities was a major step towards the goal of relating macroscopically observable quantities,
e g, stress, strain and strain-rate, to basic microstructural deformation mechanisms in metals,
such as dislocations and other microstructural rate-controlling processes.

9.2. Response Behaviour of Metals under Dynamic Loading
9.2.1. STRAIN-RATE SENSITIVITY / STRAIN-RATE HISTORY

Some metals, e.g., aluminum (FCC) and copper (FCC), may show sensitivity to both
strain-rate and strain-rate history. Other metals may show sensitivity to strain-rate only, e. g.,
steels (BCC) and titanium (HCP).

9.2.2. THE JUMP TEST “INCREMENTAL STRAIN-RATE TEST”

A well-known experiment to study the history effects in metals is the so-called “jump test”,
often referred-to as the “incremental strain-rate test’. The main objective of performing the
referred-to jump tests is to obtain information concerning the dynamic response of the
material that may be used in the development of the pertaining constitutive equations.

A jump test is effected by combining two types of loading: a quasi-static loading is
applied first and, without unloading, it is followed by a dynamic loading. Typical of the
apparatus used to perform a jump test is the stored-torque “Split Hopkinson Bar”; e.g.,
Campbell et al. 1977 and Duffy, 1979. In this experimental set-up, the specimen is a thin-
walled tube placed near the center of the bar and loaded in torsion. Quasi-static loading is first
applied by, e.g., an electric motor at one end of the specimen, which turns the bar against a
clamping mechanism. Dynamic loading is then applied from the other end by the sudden
release of a stored torque. In Campbell’s apparatus (Campbell ez al., 1977), the clamp is the
crucial part of the apparatus, its release is effected by the fracture of a brittle bolt. The
referred-to clamp must meet two requirements: First, it must provide as short time as possible
between first arrival of the pulse and the establishment of a constant strain rate. In referred-to
Campbell’s bar, this rise-time is 25 or 30 pus which corresponds to about 1.5% strain
accumulation in the specimen before a constant strain-rate of 10° s is attained. Second, the
pulse must be pure torsional, i.e., not be accompanied by pulses in other directions, e. g., an
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axial pulse or a bending pulse. This functional requirement of the apparatus can be
incorporated in the design of the clamp itself (Duffy, 1979).

Figure 9.4 shows schematically an example of the stress-strain curve (Senseny, Duffy
and Hawley, 1978) which was obtained during a jump test. The lowest curve in the Figure is
for loading at a constant low strain rate, y; , e.g., of the order of 10 or 107 5. The highest
curve was obtained at a constant high strain rate, y, , e.g. 10* 5. During a jump test, the
stress-strain curve follows the path ABCD. As shown in the figure, at point B, the strain rate
changes abruptly from ¥, to ¥, , with a resulting increase in stress of At, .

For many purposes, the “strain-rate sensitivity” of a material is evaluated by
comparing values along constant strain rate curves, e.g., the curves corresponding to constant
strain rates y; and Y, in Fig.9.4. However, a comparison of conditions at points C and F
shows that the strain and strain rate remain the same at theses points, while the stress is
different. Thus, one may consider the possibility that the behaviour of the material may
depend on some other factor, one involving, say the “deformation history”. Hence, with
reference to Fig. 9.4, Aty is often viewed as a measure of the “deformation history”
dependency, while At, is considered to be related to the “true strain rate sensitivity”.

Figures 9.5 and 9.6 show the results, due to Lindholm (1964), for cyclic loading of’
aluminum (FCC). In this context, Figure 9.5 shows the true stress vs. the true strain from
cyclic static-dynamic-static loading, while Figure 9.6 demonstrates the corresponding results
in the case of cyclic dynamic-static-dynamic loading. It is evident, from Figure 9.5, that the
stress in a dynamic test following static pre-loading is not equal to the stress found at the
same strain in all-dynamic loading (the dotted line). This difference is apparently due to
“strain rate history” (Duffy, 1979).

Bodner and Partoum (1975) and Bodner and Merzer (1978) define an “internal
variable”, based ultimately on a relation between dislocation velocity and stress. With this
internal variable, these researchers evaluate the parameters in their constitutive equations from
the results of tests carried out, using jump tests, at constant strain rates. The results from the
jump tests are then used further to establish the validity of their constitutive equations.
Reference, in this context, is made Klepaczko (1968, 1975), Campbell et al. (1978) and
Ponter (1978).

Does the strain-rate history effect is influenced by the “dwell time” ?

- For aluminum (FCC), for instance, Lindholm (1964) considered the effect of dwell
time at zero load. In this context, Lindholm loaded a specimen dynamically at 8%
strain, unloaded, and then reloaded dynamically. In this context, the results of Fig. 9.7
show a “history effect” for a dwell-time of three minutes and greater, while for a
dwell-time of 450 us none is observed.
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yi Y
Figure 9.4. Schematic stress-strain curves showing effect of strain rate
and strain-rate history on flow stress. From: Senseny, P. E., Duffy, J. and
Hawley, R. H. (1978) Experiments on strain rate history and temperature
effects during plastic deformation of close-packed metals, J. Appl. Mech.
45, March 1978, 60-6. Reprinted with permission from ASME
International.
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Figure 9.5. Cyclic static-dynamic-static loading for aluminum.
“Reprinted from J. Mech. Phys. Solids 12, Lindholm, U.S., Some
experiments with the Split Hopkinson Pressure Bar, 317-35, (1964), with
permission from Elsevier Science”.
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Figure 9.6. Cyclic dynamic-static-dynamic loading for aluminum.
“Reprinted from J. Mech. Phys. Solids 12, Lindholm, U.S., Some
experiments with the Split Hopkinson Pressure Bar, 317-35, (1964), with
permission from Elsevier Science”
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Figure 9.7. Cyclic dynamic loading for aluminum. “Reprinted from J.
Mech. Phys. Solids 12, Lindholm, U.S., Some experiments with the Split
Hopkinson Pressure Bar, 317-35, (1964), with permission from Elsevier
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- For steels (BCC), jump tests were performed by Barraclough and Sellars (1974),
Both stainless steel and low alloy steel were considered. Rods of the material were
loaded in torsion at a temperature of about 1000 °C. Their results indicate that steel
is strongly influenced by strain rate (at least at this temperature). On the other hand,
steel appeared almost insensitive to strain-rate history, as far as the jump test is
concerned. Jump tests to higher strain rates were performed by Wilson et al (1979).
Again the results show a strong strain rate sensitivity, but an insensitivity to strain rate
history (see Dufly, 1979).

A peculiar aspect of the behavior of steels was also noticed by examining the results
of Eleiche and Campbell (1976a) and pointed out by Duffy (1979). In this, it was shown that
all high strain curves reach a maximum and then turn down. The latter effect was suspected
by Duffy (1979) to be due to a material instability effect; see, e.g., Costin et al (1979). In
general, it appeared that steel (BBC) is not as sensitive to strain rate history effects as are
FCC metals, but that strain rate effects are high.

Within the strain rate range of 10* to 10° s, constant and incremental strain rate tests
were performed by Tanaka and Nojima (1979) on 0.02% and 0.45% C. steels: 1) A 0.02%
C. steel (0.02% C; 0.01% Si; 0.31% Mn, 0.008% P; 0.012% S, balance is Fe), and 2) A
0.45% C steel (0.45% C, 0.24% Si; 0.64% Mn, 0.002% P; 0.13% S, balance. Fe). In this
context, after machining, the material specimens (5 mm in diameter, and 5 mm in length) were
annealed for 1 hr. at 800°C and cooled in a vacuum furnace.
A split Hopkinson pressure bar apparatus and an Instron testing machine were used for the
high strain rate (10 to 10° s) and low strain rates (10 to 107 s) tests, respectively. In the
incremental strain rate tests, a stepped striker bar was used in the Hopkinson bar apparatus.
In the tests in which deformation was rapidly stopped at high strain rates, a device (a stopper)
was installed between the input and output bars in the apparatus (see Tanaka and Nojime,
1979).
Constant strain rate tests were performed at plastic strain rates of €, =10 to 10’ s”, and
temperatures of 78 to 290 °K. The relations between flow stress o and the plastic strain rate
(log ép), at the plastic strain €, = 5% are shown in Figures 9.8 a&b for 0.02%C and 0.45%
C steels, respectively. As shown in these figures, the stresses are considerably affected by the
plastic strain rate, especially at high temperatures.
Incremental strain rate change tests were performed by Tanaka and Nojima (1979) at both
high and low strain rates, and the values of the strain rate sensitivity of the stress as defined
by equation (9.1) below were determined.

Strain rate sensitivity of the stress: h,=Ao/Alog ép .1
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Figure 9.8. Flow stress o- plastic strain rate €, relations. (a) 0.02% C. Steel; (b) 0.45% C.
steel. From: Tanaka, K. and Nojima, T. (1979) Dynamic and static strength of steels, In:
Mechanical Properties at High Rates of Strain, Proceedings of the Second Conference on
the Mechanical Properties of Materials at High Rates of Strain, J. Harding (editor),
Oxford, 28-30, 1979, The Institute of Physics, Conference Series Number 47, pp. 166-73.
Reprinted with kind permission of the Institute of Physics.

The obtained values of h, are shown in Figures 9.9 a&b. Values of the strain rate sensitivity,
k.= o/log ep , were also determined from the slopes of the o - log €, relations which were
obtained from constant strain rate tests. In both types of steel, it was found by the authors that
the values of h_ are larger than those of k_ especially at low strain rates.

More typical of the behavior of copper (FCC) are the results of Klepaczko et al
(1977). These results were obtained by means of a torsional “Kolsky bar”, Fig. 9.10, in which
the pulse is initiated explosively rather than by means of a stored torque. This technique (for
explosive loading) was developed by Dufty et al (1971). The technique has the advantage of
producing a pulse with a much shorter rise-time (8 ps), but of shorter duration (about 100
us). An extensive series of jump tests were performed with this bar by Senseny et al (1978)
whereby four metals were tested; namely, aluminum (FCC), copper (FCC), magnesium
(HCP) and zinc (HCP). The results are shown in Fig. 9.11.
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Figure 9.9. (a) h; - log e', relations (0.02%C Steel), (b) v'h, - log ép relations (0.45% C
steel). From: Tanaka, K. and Nojima, T. (1979) Dynamic and static strength of steels, In:
Mechanical Properties at High Rates of Strain, Proceedings of the Second Conference on
the Mechanical Properties of Materials at High Rates of Strain, J. Harding (editor),
Oxford, 28-30, 1979, The Institute of Physics, Conference Series Number 47, pp. 166-73.
Reprinted with kind permission of the Institute of Physics.

Extensive series of jump tests was performed by Eleiche and Campbell (1976a) and
Campbell et al. (1977), whereby copper (FCC), titanium (HCP) and mild steel (BCC) were
tested. The tests were performed over a range of temperatures and to up to 60% of shear
strain. The results of these tests confirmed that copper is sensitive to strain rate history, while
titanium and mild steel are less sensitive to strain-rate history, but more sensitive to direct
effects of strain rate. Stelly and Dormeval (1978) performed experiments of the cyclic type,
involving complete unloading before reloading at a new strain rate, with specimens of copper
(FCC). In these tests, loading was in compression, using a Kolsky bar.

Other strain rate histories can be imposed besides that characterizing the jump test.
Eleiche and Campbell (1976b), for instance, performed tests, on a moderately sensitive
magnesium alloy, in which the strain rate is reversed in sign while being changed in magnitude
from 10° to 107 s™; Figures 9.12 to 9.14.
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The work described above refers entirely to polycrystalline metals. Recently, some
progress has been made within the domain of establishing the history effects during the
deformation of single crystals in the dynamic range of strain rates. Chiem and Duffy (1979),
for instance, carried out jump tests in shear with single crystals of LiF. Their tests were
performed on small cuboid specimens, four of which were mounted symmetrically in a
torsional Kolsky bar.

Summary

- The FCC metals, e.g. aluminum and copper, are not strongly sensitive to strain rate.
However, history effects appear to be important.

- Steel (BCC) and fitanium (HCP), on the other hand, show a greater strain rate
sensitivity but only a small history effect.

- For the HCP metals, in general, e.g., magnesium and zinc, it appears that insufficient
data are available.
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Some results obtained by Lindholm (1965), using the split Hopkinson pressure bar are
presented in Figures 9.15, 9.16 and 9.17 for three commercially pure, annealed, face centered
cubic metals: copper, aluminum and lead, respectively, and in Figure 9.18 for iron. In these
figures, stress and strain are the true or instantaneous values. In Fig. 9.18, the negative slope
of the stress vs. strain rate curve at the higher strains is generally associated with “strain
ageing”. Strain ageing occurs by diffusion of interstitials, e.g., carbon and nitrogen, into the
active dislocation sites. The stress required to maintain flow is dependent upon the number
of dislocations which are either free or bound by this atmosphere and, thus, on the effective

interstitial diffusion rates, the temperature and deformation rate during the test (Lindholm,
1965).
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Figure 9.15. Flow stress as a function of strain rate for copper.
Reprinted from "Lindholm, U. S., Dynamic deformation of metals, in:
Behavior of Materials under Dynamic Loading, edited by N. J.
Huffington, Jr., The American Society of Mechanical Engineers, New
York, 1965, 42-61", with kind permission of The American society of
Mechanical Engineers.
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Figure 9.16. Flow stress as a function of strain rate for aluminum. Reprinted from
“Lindholm, U. S., Dynamic deformation of metals, in: Behavior of Materials Under
Dynamic Loading, edited by N. I. Huffington, Jr., The American Society of Mechanical
Engineers, New York, 1965, 42-61", with kind permission of The American Society of
Mechanical Engineers.

6
L B é’(
[ A
vo.‘l‘ :
[
= Lo .o 4
3 | —_Og jﬁgﬁ’, 0.
E ool et
MM
|
LEAD
°|o" 10° 19 0" | 10 10t 10 0*

STRAIN RATE (SEC™')

Figure 9.17. Flow stress as a function of strain rate for lead. Reprinted from "Lindholm,
U. S., Dynamic deformation of metals, in: Behavior of Materials under Dynamic Loading,
edited by N. J. Huffington, Jr., The American Society of Mechanical Engineers, New York,
1965, 42-61", with kind permission of The American Society of Mechanical Engineers.
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Figure 9.18. Flow stress as a function of strain rate for iron. Reprinted
from "Lindholm, U. S., Dynamic deformation of metals, in: Behavior of
Materials under Dynamic Loading, edited by N. J. Huffington, Jr., The
American Society of Mechanical Engineers, New York, 1965, 42-61",
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9.2.3. DYNAMIC BIAXIAL LOADING

Figure 9.19 is due to Lindholm (1965). It shows a plot of stress and strain as functions
of time in the case of biaxial loading of mild steel. In this figure, 0 and 1 are the tensile and
shear stresses, respectively, and € and y are the corresponding tensile and shear strains. For
this record, as discussed by Lindholm (1965), yield occurred about 6 milliseconds after initial
application of the load. There is strong instability in torsion, whereas yield is hardly noticeable
on the tensile stress trace. This may be due to both the material instability in mild steel,
associated with the upper and lower yield stresses, and the region of zero work hardening
during the lower yield point elongation. While the strain increments remain roughly
proportional, the stress increment vector assumes a direction tangent to the yield surface and
therefore normal to the strain increment vector during the period of zero work hardening.

Fig. 9.20 (Lindholm, 1965) demonstrates the results from 20 tests on mild steel at
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varying loading rates and stress ratios; from pure tension to pure torsion. The two curves
correspond to two different measures of stress. The abscissa is the square root of the second
invariant of the elastic strain tensor. This measure of the strain rate is nearly proportional to
the reciprocal of the time to yield or delay time. For the lower curve, of Fig. 9.20, correlation
is made with the square root of the second invariant of the deviatoric stress tensor, which is
equivalent to a distortion energy or octahedral shearing stress criteria. For this curve, there
appears a tendency for the tensile stress points to be consistently high (Linholm, 1965).
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Figure 9.19. Typical dynamic record for combined loading of mild steel.
Reprinted from “Lindholm, U. S., Dynamic deformation of metals, in:
Behavior of Materials under Dynamic Loading, edited by N. J.
Huffington, Jr., The American Society of Mechanical Engineers, New
York, 1965, 42-61", with kind permission of The American Society of
Mechanical Engineers.
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Figure 9.20. Correlation of results for the upper yield stress in mild steel
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9.3. Metallurgical Effects

9.3.1. STRAIN-RATE EFFECTS

A large number of investigations, carried out in the last four decade, or about, in the area
of dynamic behavior of materials, have shown that effects due to high strain-rate could be
quite significant, e.g., the flow stress and the ductility of materials, the deformation and
fracture mechanisms are often quite different from those exhibited under static or quasi-static
loading. At very high strains and strain rates, there can be abrupt changes in deformation
mode leading to noticeably different microstructures. These lead to noticeable metallurgical

effects, e.g., microstructurally related flow stress, ductility, hardness and other related
mechanical property changes.
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Deformation induced metallurgical effects are now generally well documented to be the
result of stress or strain-induced microstructures, or microstructural changes in crystalline
(polycrystalline) metals and alloys. In many cases, strain hardening, work hardening, or other
controlling deformation mechanisms can be described by the generation, movement and
interactions of dislocations. These dislocations can produce drag or a range of impedances,
including obstacles to further motion.

While dislocations may be involved in a range of metallurgical effects which are evident
in the response behavior of metals and alloys, there are of course the controlling effects of
temperature, strain, strain-rate and the associated mechanical state.

Metallurgical effects, characterized mainly by the relationships between deformation
induced microstructures and residual mechanical properties, are therefore the result of the
complex interrelations between stress, stress state, strain, strain rate and temperature.

For instance, changes in plastic stress in a uniaxial tensile stress state may be expressed
by the following expression (Murr, 1987):

do=(§9.] de+| 42 dé+(ﬂ) dT
de J; 1 de ), . dT /), ; 9.2)

where 0, €, € and T are the stress, strain, strain rate, and absolute temperature, respectively.

The above expression indicates that even if the loading or deformation parameters are
controlled externally to the deforming material, there can be functional relationships which
could override that control. For instance, temperature in a deforming material can be raised
by increasing the strain, and by adiabatic heating at high strain rates. In addition, very high
pressures in the shock loading regime can create both transient and residual heating,

Figure 9.21 is due to Murr (1987). It illustrates a range of microstructures which
include planar dislocation arrays at relatively low levels of strain which evolve into more
dense and microstructurally different arrays at higher strain levels. These different arrays
(microstructures) are composed of twin-faults and martensite, whereby the martensite forms
at the intersections of twin-fault bundles.

The dislocation density changes may be related to changes in stress (or strain) through
expressions of the form (Murr, 1987):

o=0,+Kyp 9.3)

=p, + A€
P=Po 9.4)
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where o is the flow stress, p is the current dislocation density (p, is the initial dislocation
density) and g, K and A4 are constants. In the context of flow stress or residual yield stress
(at constant strain), Eqn. (9.3) also expresses the fact that the residual yield or flow stress will
be increased by the creation of dislocations. Since hardness and yield stress are inter-related,
the former is also expected to increase by the creation of such dislocations (Murr, 1987).

9.3.2. SHOCK LOADING AND RESULTING SHOCK WAVES

In describing the metallurgical effects of shock and/or high strain-rate loading, one may
consider the effects of such loading on the evolution of the microstructure.

Shock Waves
Shock loading represents a regime at the extreme end of the high-strain rate deformation
range (~ 10%to 107 s* ) as opposed to tensile or compression loading at strain rates of ~ 10*
s"). The pulse duration is very short, usually never exceeding 10 us. Peak pressure is the
dominant shock loading parameter in residual microstructure production where strain is small
or negligible.

Shock waves are characterized by an abrupt pressure front and a state of uniaxial
strain. This characterization includes a hydrostatic component of stress which, when greater
by several factors than the dynamic flow stress in the material, allows for the assumption that
the solid has no shear resistance (G = 0), i.e, a “hydrodynamic” behavior (e.g.,
Eichelberger, 1965).

In reality, however, this pressure front may not be abrupt. Thus, a shock wave
propagating into or through a material might be illustrated in the context of time and pressure
as shown schematically on Fig. 9.22 (Murr, 1987).

As shown in Fig. 9.22, the shock front is shown as a region where the material is
subjected to increasing pressure (stress) up to the peak shock pressure (P). The time of
application of P (the peak shock pressure) is referred to as the “shock pulse duration”, At.
As the pressure of the wave declines or is attenuated, the shock wave is called a “rarefaction
wave” or “wave portion”.

Both the peak shock pressure and its duration can be expected to have some effect on
the shock dynamic behavior and the residual properties of the material. This is due to the fact
that the disturbance created within the shock front and the dynamic behavior of the material
will be altered by these two parameters. Fig. 9.23 shows examples of shock-induced
microstructures in face-centered cubic metals having a range of stacking fault free energies
(e.g., Murr and Meyers, 1983 and Murr, 1987).
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Figure 9.2]. Examples of residual microstructures in type 304 stainless steel after deformation
in uniaxial tension to an average total strain € as indicated (room temperature; €=107 s"'). The
microstructures are characterized by increasing densities of dislocation arrays, stacking faults
and twin faults, with o’-martensite forming at twin-fault intersections and constituting a
prominent volume fraction nearly equivalent, as a volume fraction percent, to the total strain
value from about 25% strain “Reprinted from Murr, L. E., Metallurgical Effects of Shock and
High-Strain-Rate Loading, in Blazynski, T. Z. (editor), Materials at High Strain Rates (1987),
1-46, with kind permission from Chapman & Hall”.
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Figure 9.22. Idealized (schematic) view of a shock pulse traveling through
a solid material. The z-direction is assumed to be normal to the plane shock
wave front and to the specimen surface “Reprinted from Murr, L. E.,
Metallurgical Effects of Shock and High-Strain-Rate Loading, in: Blazynski,
T. Z. (editor), Materials at High Strain Rates (1987), 1-46, with kind
permission from Chapman & Hall”.

9.3.3. SHOCK-INDUCED MICROSTRUCTURE AND MECHANICAL PROPERTY
CHANGES

The peak pressure of the shock wave characterizes the shock front. This, by
consequence, influences the stress-induced generation of dislocations and other defects in
metals and alloys. In view of the very high strain rates involved in shock loading, the peak
pressure may result in some of the following unique deformation phenomena:

- Pressures (shock stresses) of two orders of magnitude greater than the yield or flow
stress of metals and alloys are common, and, in most controlled plane wave shock
loading, strains are minimal (<5%). But because the rapid movement of the shock
wave, dislocations interact within the shock front forming jogs which favor high
vacancy production (Kressel and Brown, 1967, and Murr, Inal and Morales, 1967). In
many shock-loaded metals and alloys, vacancies and vacancy clusters can contribute to
residual metallurgical effects such as hardness, ductility and thermal recovery.

-~ At very high pressures, the heating associated with the high-pressure state (within the
shock front) can become very significant, and dislocations or other defects created by
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the propagating shock front can be partially or completely annihilated. Residual heating
after shock front may also create recovery, recrystallization and related microstructure
which may be characterized, for instance, by short twin segments, sub-grains, etc..

Some of the above mentioned features are illustrated in Fig. 9.24, which shows residual
hardness reduction as a result of shock-thermal recovery in nickel and type 304
stainless steel at plane shock pressures above about 60 Gpa.

Figure 9.23. Examples of shock-induced microstructures in face-centered cubic metals having
a range of stacking fault free energies. (a) Vi (15 GPa); (b) Cu (15 Gpa), (c) Fe-34% Ni (10
Gpa), (d) Ni Cr (8 Gpa), (¢) Inconel 600 (8GPa), (f) 304 stainless steel (15 Gpa). “Reprinted
from Murr, L. E., Metallurgical Effects of Shock and High-Strain-Rate Loading, in: Blazynski,
T. Z. (editor), Materials at High Strain Rates (1987), 1-46, with kind permission from
Chapman & Hall”; After Murr and Meyers (1983).
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Figure 9.24. Thermal effects and thermal recovery associated with the high
pressure state in shock-loaded metals and alloys. “Reprinted from Murr, L.
E., Metallurgical Effects of Shock and High-Strain-Rate Loading, in:
Blazynski, T. Z. (editor), Materials at High Strain Rates (1987), 1-46, with
kind permission from Chapman & Hall”. Graphs after Murr (1981a).

During the production of dislocations (and other defects) in the shock front, heating
occurs. The latter, combined with the actual defect production, contributes to an
internal energy change across the shock front. On the basis of the work done on a solid
during rarefaction (stored energy calculations), Murr (1987) advanced (see, also, Murr
and Meyers, 1983) the following expression for the residual yield or flow stress of a
metal or alloy subjected to a ‘planar’ shock:

(0-0,)=2aG [b] {f®)}" ©0.5)
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Where 0, and a are constants for any particular material, G is the shear modulus, b
is Burgers vector and P is the peak shock pressure.

In the above expression (9.5), it is readily apparent that the left hand side of this
expression is dependent on the changes in residual mechanical properties of the material
under consideration, e.g., yield strength, ultimate tensile strength, hardness, following
the passage of a shock wave. These changes will be shock-pressure dependent. As
mentioned earlier, such dependence is the result of shock-wave-induced defects, for
instance, dislocations as illustrated schematically in Fig. 9.24.

-~ As the peak pressure, in the plane-wave compressive shock loading, is increased, the
dislocation density increases and as a consequence in high-stacking-fault free energy
materials (such as nickel) the dislocation cell size (or cell center spacing) decreases. In
low-stacking-fault free energy materials where twin -faults form, the density or volume
fraction of twin-faults will increase. If the twin-fault bundle thickness does not change
much, the consequence of this increased volume fraction is a corresponding decrease
in the twin-fault spacing. These parametric changes with peak shock pressure, at
constant shock pulse duration, are illustrated in the experimental data graphs in Fig.
9.24 (Murr,1987). It is particularly important to observe in this figure that:

- The residual hardness is functionally related to the square root of the peak
pressure, for a great variety of shock loaded metals and alloys.

- The two obvious deviations in the slopes of the straight lines occur for metals
dispersed with fine particles of thoria (ThO,), or thoria dispersed particles. The
thoria dispersion not only hardens the material, but also locks up dislocations
created by the shock front. This feature is apparent on comparing the annealing
responses for NiCr (chromel A) and Thoria dispersed-NiCr, Fig. 9.25. The latter
figure attests not only to the hardness difference for dispersion-hardened metals
shown in Fig. 9.26, but also to the unique locking ability of dispersed particles
in shock-loaded materials: While dislocations can be created by the shock front
passage in spite of the presence of the dispersed particles, the particles could
effectively prevent the dislocations created by the shock front from annealing out,
thereby maintaining the shock-induced high hardness to very high temperatures.

- A summary review of the effects of peak shock pressure for plane-wave,
shock-loaded polycrystalline metals and alloys is shown in Figure 9.26 and, also,
as a microstructure-property map in Fig. 9.27. Both figures are due to Murr
(1987).

9.3.4. TWINNING IN SHOCK-LOADED METALS AND ALLOYS

One of the unique metallurgical effects of planar shock loading is the occurrence of
twins in crystalline metals and alloys at some critical pressure. This is especially unique
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because some metals such as nickel and molybdenum do not normally twin when subjected
to other modes of loading.

In FCC-metals and alloys, twining is expected to occur initially in (001) orientations.
Twinning also occurs preferentially in low-stacking fault free energy metals and alloys as the
preponderance of stacking faults provides opportunities for thin twins to form. This process
is, however, irregular, leading to the formation of bundles of intermixed stacking faults
(intrinsic, extrinsic and other irregular faults) and thin twins, often referred to as “twin faults”.
Thus, the critical pressure at which twinning occurs in FCC- metals and alloys appears to be
dependent on stacking fault free energy. This is illustrated in Fig. 9.28 (due to Murr, 1987).

Figure 9.25. Comparison of hardness and hardness recovery in shock-loaded Ni,, Cr,, and
TD-NiCr (the same alloy with 2 vol % ThO, included as a dispersed phase) for a constant
annealing time of 1 h. The corresponding unshocked microstructures are also shown for
comparison. “Reprinted from Murr, L. E., Metallurgical Effects of Shock and High-Strain-Rate
Loading, in: Blazynski, T. Z. (editor), Materials at High Strain Rates (1987), 1-46, with kind
permission from Chapman & Hall”. Graphs after Murr (1981a).

Twinning in aluminum (where the stacking fault free energy is approximately 160
mJ/m?), while estimated from Fig. 9.28 to occur at about 40 Gpa, should not likely to occur
because of the low melting point for aluminum (660 °C) and the shock heating which would
occur at that pressure (Fig. 9.27) leading to complete recovery (annealing) at pressures below
the critical twinning pressure. This has yet to be demonstrated experimentally (Murr, 1987).
The data in Fig. 9.28 correspond generally to ambient temperatures or above (Fig. 9.27) and
very low (or zero) strain. Consequently, changing the shock temperature or altering the strain
should have a significant effect on the critical twinning conditions implicit in Fig. 9.28.
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In low-stacking fault free energy alloys such as brass and stainless steel, planar
dislocation arrays and stacking faults at very low peak shock pressures (<10 GPA) lead to
increasing densities of twin-faults at increasing pressures above the critical twinning pressures
(10-20 GPA). In high-stacking fault free energy metals, such as nickel and copper, dislocation
cells densify with increasing peak shock pressure, resulting in a reduction in the average
dislocation cell size d and a saturation of cell size at the critical twinning pressure. Twins and
twin-faults develop with increasing density and in orientations other than (001) above the
critical twinning pressure. There is, therefore, a microstructural transition in metals like
copper and nickel, e.g., dislocation cells decreasing in size up to the critical twinning pressure
where twins and twin-faults increasing in density occurs. These features are illustrated in
Fig. 9.29 (due to Murr, 1987).
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Figure 9.26. Parametric variations (metallurgical effects and variations of residual mechanicat
properties) in shock-loaded metals and alloys “Reprinted from Murr, L. E., Metallurgical
Effects of Shock and High-Strain-Rate Loading, in: Blazynski, T. Z. (editor), Materials at High
Strain Rates (1987), 1-46, with kind permission from Chapman & Hall”.
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Figure 9.27. Microstructure-property hypermap for crystalline shock-loaded metals and alloys.
Arrows indicate parametric increase (T) or decrease (l) “Reprinted from Murr, L. E.,
Metallurgical Effects of Shock and High-Strain-Rate Loading, in: Blazynski, T. Z. (editor),
Materials at High Strain Rates (1987), 1-46, with kind permission from Chapman & Hall”,
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(1981); stacking-fault free energy values are from Murr (1975)) “Reprinted from Murr, L. E.,
Metallurgical Effects of Shock and High-Strain-Rate Loading, in: Blazynski, T. Z. (editor),
Materials at High Strain Rates (1987), 1-46, with kind permission from Chapman & Hall”.
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Figure 9.29. A comparison of dislocation cell size changes and twin-fault spacing changes for
shock-loaded and cold-rolled metals and alloys “Reprinted from Murr, L. E., Metallurgical
Effects of Shock and High-Strain-Rate Loading, in: Blazynski, T. Z. (editor), Materials at High
Strain Rates (1987), 1-46, with kind permission from Chapman & Hall”.

9.3.5. METALLURGICAL EFFECTS OF SHOCK PULSE DURATION

The pulse duration in shock loading serves to equilibrate defects generated in the shock
front by maintaining the applied peak pressure for some interval of time. As mentioned earlier,
the pulse duration is very short, usually never exceeding 10 ps. Thus, a pulse duration range
of 0.1 to 10 ps might represent a strain rate of approximately 107 to 10° s,

Murr (1981a&b) summarized the effects of pulse duration on the residual structure and
properties of shock-deformed metals and alloys:

- While longer pulse durations seem to allow for larger twin or twin-fault volume
fractions in metals and alloys which twin at sufficiently high peak shock pressures, there
is no significant effect on the residual hardness and related mechanical properties.

-  In high stacking fault free energy metals such as nickel, where dislocation cells are
formed, larger pulse durations do not alter the cell sizes but simply allow the cells to
be more well defined or better developed, Fig. 9.30.
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—  While twin volume and martensite volume fractions have been observed to increase
with increasing shock pulse duration over the range of about 1 to 10 ps (Fig. 9.30), the
corresponding hardness does not change because the deformation gradient wavelength
is not altered significantly.

-~ In low-stacking fault free energy alloys, at very short pulse durations (<0.50 ps ),
irregular behaviour may occur due to peak pressure instabilities and uncertainties which
result from the use of flyer plates to create a planar shock wave. The result can result
in, for instance, variations in residual hardness (see Murr, 1981).

9.3.6. STRAIN RATE EFFECTS OF UNIAXIAL STRESSES
Most metals and alloys exhibit effects of varying strain rate on deformation mechanisms.

Plastic strain rate is commonly expressed, with the inclusion of the microstructure, by the so-
called Orowan expression:

p_ -
e =bp, (€8,0)v(e,0,) (9.6)
where
b is Burgers vector
Pm is the mobile dislocation density
v is the average dislocation density

and both p,, and Vv are considered to be functions of the stress o, and plastic strain €”.
9.3.7. STRAIN-RATE SENSITIVITY
Strain-rate sensitivity, at constant strain, is often expressed by
o=K(e)* 9.7)
where K is a constant.

Strain-rate sensitivity has been measured experimentally to vary significantly when defined

as a function of flow stress as
Jdo
B = .
€ alogé | (9.8)
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Figure 9.30. Examples of the effects of plane-wave shock pulse duration on the residual
properties of metals and alloys. “Reprinted from Murr, L. E., Metallurgical Effects of Shock

and High-Strain-Rate Loading, in: Blazynski, T. Z. (editor), Materials at High Strain Rates
(1987), 1-46, with permission from Chapman & Hall”.

It is apparent from (9.8) that with the creation of mobile dislocations, p,, begins to
saturate, or if the average dislocation velocity v becomes limited in some way, the strain-rate
sensitivity, f3,, will change noticeably: In this context, 3, is found to increase when € exceeds

roughly 10° s™ (e. g., Campell, 1970 and Lindholm, 1978), but below that range, B either
does not increase or the change is irregular.

Figure 9.31 illustrates some stress/strain/strain-rate curves for copper at various strains
and over a range of strain-rates, along with similar, smoothed curve data for Nitronic 40 and
type 316 stainless steels based upon some of the experimental results of Follansbee (1986).

The increased rate sensitivity above 10° s (denoted as the high strain rate region) is
quite apparent for copper (Fig. 9.31a), while, for the stainless steels (Fig. 9.31b), the
increased rate sensitivity appears to begin at strain rates as low as 10?5
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Figure. 9.31. Flow stress versus strain rate curves for some face-centered cubic metals and
alloys. (a) Copper measured at various strains; (b) Nitronic 40 and 316L stainless steels at a
constant strain. “Reprinted from Murr, L. E., Metallurgical Effects of Shock and High-Strain-
Rate Loading, in: Blazynski, T. Z. (editor), Materials at High Strain Rates (1987), 1-46, with
kind permission from Chapman & Hall”.

Figure 9.31 illustrates the connection between uniaxial shock loading and uniaxial high-
strain rate deformation. The figure shows a comparison of the mechanical threshold stress
(measured at a constant strain of 0.0825) as a function of strain rate for copper from the
experiments of Follansbee (1986). The estimated strain-rate range for a corresponding shock
loading experiment 10° to 107 s is indicative of the fact that the increased strain-rate
sensitivity of the threshold stress noted at strain rates exceeding ~ 10° s™! continues into the
shock loading regime.

Measurements of the mechanical threshold stress (Fig. 9.31) coupled with an analysis
of the dislocation-obstacle interactions led Follansbee (1986) to the conclusion that the
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increased strain-rate sensitivity arises from the rate sensitivity of the microstructure evolution
rather than from any change in the involved deformation mechanism. Murr (1987) supported
the latter conclusion by referring to the fact, revealed from examinations of residual
microstructures over a range of strain rates for copper and stainless steel, that the
microstructures may change neither abruptly nor characteristically. In copper, for instance,
changes in dislocation cell size and density are consistent with the mentioned conclusion. In
type 304 stainless steel, the microstructure and its evolution support this conclusion (Murr,
1987).

9.3.8. ADIABATIC SHEAR PHENOMENA

When metals and alloys are deformed at very large strains and at very high strain rates
such as in ballistic impact and penetration, forging and machining, localized shearing can
occur, leading to localized deformation and a localization of heat generation. At high strain
rates, heat generated in the localized bands provides some self-acceleration to the localization,
and even melting. This concentration of deformation leads to two categories of adiabatic
shear bands; namely, “deformation” and “fransformation” bands. The microstructure
associated with these bands includes dynamic re-crystallized microstructures, dislocations,
microtwins and twin-faults as a result of the shear deformation in the localized bands. These
fine and intermixed microstructures lead to very small deformation gradient wavelengths, and
dramatic increases in localized hardness or residual flow stress (Murr, 1987). The reader is
referred, in this context, to the work of Bedford et al. ( 1974), Blicharski and Gorczyca
(1978), Malin and Hatherly (1979), Rogers (1979, 1983), Aghan and Nutting (1980), Murr
et al. (1986), Stelly and Dormeval (1986) and Dormeval (1987).

‘Adiabatic shearing’ is one aspect of high strain-rate deformation that has received

much attention for some years due to the large number of applications in which it appears to
play a significant role. Although this phenomenon was discovered and studied over five
decades ago; €. g. Zener and Holloman (1944) and Zener (1948), the phenomenon was not
considered for a long time, and it was only in early 1970s that researchers began to take a
new interest in its study.
In metals, it has been determined that at room temperature about 90% of the work of
deformation energy goes into heat. Adiabatic shearing is a particular situation in which the
heat generated in localized bands cannot be dissipated because of the high level of strain rate
in conjunction with the thermal properties of the material. An idealized adiabatic deformation
does not exist, some part of the heat being always lost to the surrounding metal and the
environment. However, the term ‘adiabatic’ is taken to refer to the fact that a large portion
of the heat is retained in the band.

“Shear bands” form as a result of a thermo-mechanical instability due to the presence
of a local inhomogeneity, inducing local deformation and heating. If the thermal properties
of the material are not sufficient to conduct the generated heat away, the deformation
becomes unstable and is localized on surfaces of very small thickness (~ 10 to 50 microns).
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On microscopic observation, these surfaces appear as narrow bands in which cracks can
propagate (Fig. 9.32), inducing catastrophic failure of the material.

Adiabatic shearing is involved in a large number of processes where high strain rates
occur, €.g., impact, penetration, fragmentation, machining, metal forming.

Figure 9.32. Evidence of adiabatic shear bands in TA6V titanium alloy: (a) fragment from an
explosively expanded cylinder; (b) chip (machine-turned). “Reprinted from Dormeval, R., The
Adiabatic Shear Phenomenon, in: Blazynski, T. Z. (editor), Materials at High Strain Rates
(1987), 47-70, with kind permission from Chapman & Hall”.

It is traditional to distinguish two types of adiabatic shear band:

—  Deformed bands. They are characterized by a very high shear strain (up to 100) in a
very thin zone of deformation. Inside the band, the grains are highly distorted, but there
is no evidence of a change in the microstructure of the material.

-~ Transformed bands. In these bands, a crystallographic phase change occurs. In steels,
for instance, they are often called ‘white bands’, Fig. 9.32, as their appearance after
itching is quite different from that of the matrix.
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CHAPTER 10

PLASTIC INSTABILITY AND LOCALIZATION EFFECTS

10.1. Introduction

A decrease in stiffness due to geometrical change and/or material softening caused by
deformation is responsible for the occurrence of instability phenomena in engineering
materials within the plastic range; i.e., beyond the yield point. Such phenomena manifest
themselves in various ways; e.g., buckling, bulging, necking and shear banding. Once such
instabilities are started, they tend to persist and the stiffness of the specific cross-sectional
area of the specimen decreases; therefore deformation intensifies locally and eventually leads
to final collapse and/or failure.

Because the occurrence of much instabilities is an important precursor to collapse or
failure, computational prediction of the onset and of the augmentation of these instabilities
is essential and indispensable in understanding the ultimate strength of the structures and
materials, and in predicting and improving plastic solids formability.

The onset of plastic instability is likely to be related to the point where “bifurcation”
from the fundamental path becomes possible

The point of bifurcation maybe obtained by applying “Hill's bifurcation theorem
(1958)” for “associative materials” under “conservative loading”; Hill (1958).

A more elaborate theorem must be employed for “non associative” and “nonlinear”
materials;, see, e.g., Tomita (1994).
10.2. Onset of Shear Banding

The onset of shear banding can be analysed within the framework given by Hill
(1962a), and Rice (1976).

The necessary conditions for the earliest possible localization of instabilities may be
determined by the linear instability theory (Leroy and Ortiz, 1989).

Under specific conditions, post bifurcation behaviour, immediately after the
bifurcation point; may be expressed by the sumof the fundamental solution at the bifurcation
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point and a suitably
normalized bifurcation mode (Hutchinson 1973a).

Regardless of the problem associated with the material characteristics and loading
conditions, the so-called “Growth of Plastic Instability” may be predicted with proper
computational conditions.

10.2.1. BASIC EQUATIONS T
Virtual work principle: s,

In this section, the governing equations for an
elastic-plastic boundary value problem are given

within the context of large-strain theory. An S,
updated Lagrangian formulation of the field and
constitutive equations is employed v

An equilibrium state of the body

Consider an equilibrium state for a body,
with volume V and surface S, subjected to a
velocity constraint on S, and traction on the remaining part of S, i.e., S,. Each particle is
labelled by a set of curvilinear coordinates x' (see Appendix D). The latter are embedded in
the body in the current state and serve as independent variables. In the deformed
configuration, the covariant component of metric tensor are denoted by G;. The weak form
of the equation governing the rate of stress and traction yields the virtual work principle (Hill,
1958, Seguchi et al., 1971, Kitagawa et al., 1972).

f(}:‘i+oiio‘,c)6ui,jdv=fT‘auids

J ! (10.1)
where:
Y§  is the Kirchhoft stress (Chapter2). It is identical to Cauchy stress ¢/ in the
) current configuration.
T'  is the nominal traction rate.
du, s the virtual velocity satisfying the homogeneous boundary condition over
surface
. (an over dot) denotes a material derivative.
(.),8  denotes the covariant derivative with respect to the current coordinates
(Appendix A).

For the body with configuration dependent loading, the nominal traction rate Piin
(10.1) is given as
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T,+

) Configuration (10.2)
Configuration dependent traction
independent rate

traction rate

Followmg Hill (1962a), Sewell (1967) and Dubey (1970), the configuration-dependent
traction rate T ' , may be expressed as a function in the velocity v, and velocity gradient v;; as

T, = Afty + @ Riky, (10.3)
the surface unit
normal

The tensors A’' and R™ are independent of the velocity. The first term in (10.3) may
represent the traction induced by elastic formulation and the second term may represent the
follower force; see, e.g., Timoshenko and Gere (1961). Under certain conditions, the
configuration dependent traction rate may have potential and the variational principle can be
established (Tomita 1994).

For a body with pressure p on the portion of the surface S,, ’i'oi and 'i'ui are given by

T,=-pnGY
.i.ui =n, Riike Y (10.4)
Rjikﬂ =-p (Gij le - GkiGjﬂ)

Meanwhile, the weak form of the energy balance equation for the same body subjected to heat
flux q = -n;q; = Q on S, and temperature constraint on S; can be established by multiplying
the local form of the energy balance equation by 8T which satisfies the homogeneous
boundary condition on S, as expressed by
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Thermal conductivity

specific heat
tensor

{51‘@ @l)TdV+£6TJéTJdV

mass density =f5T@dV+f6TQdS
v S,

fraction of irreversible
work

(10.5)

In (10.5), the fraction of invertible work w P = 0'i D,” which is converted to heat is &, where
a is in the range of 0.85 - 0.95 for many metals; Taylor and Quinney (1934). Meantime, the
specific form of heat flux Q depends on the respective boundary conditions.

Constitutive Equations

Predictions of instability behaviour strongly

depend on material response. n -
AN
In elastic-plastic material response, the plastic part Dk'; of §
the §train rate Dkakg =(y, +ul,k)/2 is u.sua.lly g f V.$ ~
specified through various classes of constitutive « |
equations. A /
Elastic material response takes the form of a b %

linear relationship between the elastic strain rate,
DG =D, - Dk'j, ,and a suitable objective stress rate as

Eij ___ (Dkg . Dkl:) (10.6)

An elastic constitutive tensor

Meantime, the constitutive equation for elastic-plastic response can be expressed as



56

IV =LiD,, (10.7)

where L™ is an elastic-plastic constitutive tensor which depends on the current stress, the
deformation history and the choice of an objective stress rate. Reference in this context is
made to Dafalias (1983), Loret (1983), and Dafalias and Aifantis (1990), among others.

For the material obeying the flow rule, plastic strain rate Dijp can be expressed by

rm \ (10.8)
AN

1
/: directions of plastic strain

e normal to components
the hardening modulus the yield surface

[
Dy =

For n; = my;, the constitutive equations derived for associated flow rule are recovered. The
constitutive equations following “J, flow theory” (Hill 1958, Hutchinson, 1973b), “J,
Kinematic hardening theory” (Tvergaard 1978) and many anisotropic theories (see, e.g.,
Neale 1980, Tomita 1994) fall into the special case of eqn. (10.8).

Rudnicki and Rice (1975) expressed in their model n;; and m;; by the following relationship
n, =y30;/20 +BG;/3
and
m; =y30,;/20 +MGy/3 (10.9)

Specific values of B and M can be determined, for instance, by a Gurson-type yield
function (Gurson 1977, Tvergaard, 1981).

A kinematic hardening version of the material was suggested by Mear and
Hutchinson (1985) and Tvergaard (1987). Tomita (1994) extended the model to account for
the change in elasticity modulus due to the void volume fraction.

The deformation type constitutive equation, originally proposed by Budiansky (1959)
has been generalized to account for finite strain (Stdren and Rice, 1975, Needleman and
Tvergaard, 1977, Hutchinson and Neale, 1973) and anisotropy (Tomita and Shindo, 1985).
The plastic strain constitutive equation is
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1 " 1 J
Dij“ = E L. ynm nij+ @ (Eij -n,, Y nm nij (10.10)

a new harderning modulus

The constitutive eqn. (10.10) is valid for the deformation satisfying the total loading
condition (Budiansky 1959).

For the strongly non-proportional stress histories, Christofersen and Hutchinson
(1979) proposed the “corner theory” in which an angular measure ¢ of the stress rate
direction with respect to the corner direction of the yield surface is defined. The
instantaneous moduli for nearly proportional loading, ¢ < ¢,, are chosen equal to those of
deformation theory, and for increasing derivation from proportional loading ¢, < ¢ < ¢,
the moduli stiffen monotonously until they coincide with the linear elastic moduli for elastic
deformation or unloading.

The plastic strain rate constitutive equation can be expressed by

n__OEP s
Yogrigxe

C 2 \

A transition function; it is Plastic compliance tensor
unity throughout the total

loading range, 0<0<0,,

and is identically zero for

0, <0<m. Here, f(0)

decreases monotonically

from unity to zero as 0

increases form 0,to 0.

(10.11)

The Bauschinger effect (Tomita et al., 1986) and anisotropy (Tomita et Shindo 1990) have
been concretely introduced in the constitutive eqn. (10.11); see, also, Gotoh (1985).
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10.3. Strain-Rate and Temperature Effects

Engineering materials generally do possess strain rate and temperature sensitivities
to various extents. These have an important effect on instability behaviour. Here we restrict
our attention to an isotropic material and assume that the relation of representative stress g,
representative viscoplastic strain €°, representative viscoplastic strain rate ; and absolute
temperature T has the form

or
s-6(a.e,7) (10.12)

Tomita (1994) advanced that the constitutive equation for plastic strain rate, eqn. (10.10)
may be modified to include the effect of strain rate and temperature sensitivity. The
viscoplastic strain rate Dijv is proposed to be given by

v l 1 0
Dij = H (nnm Emn ﬂ T )nu + B_ (Eij -n,, yoom n; )
s
'- 25 5 (10.13)
nij= ou__’ h:_—g., hs= 2_?
V23 0 I 3e'w

In (2.13), w accounts for the degree of non-coaxiality of the viscoplastic strain rate
to the stress tensor (Tomita and Shindo 1985), and f stands for the temperature sensitivity
of the flow stress. Naturally the situation w -~ 0 provides a generalized constitutive eqn.
following the “J, flow theory™; Tomita (1994).

When the total strain rate D, is assumed to be the sum of an elastic strain rate D/,
accounting for the temperature dependent elastic response, and a viscoplastic strain rate D,
Eqn. (10.13), the constitutive equation for stress rate L., strain rateD,, and the rate of
charge in temps Tis then established (Tomita et al, 1990 ).

A concrete form of (10.12) which is often used has the form
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— ) n = (10.14)

«<

where g, (T ) is temperature dependent stress characterizing the thermal softening affect, and
n and m are strain and strain rate sensitivity components, respectively. Here g ande are
reference strain and strain rate, respectively.

According to the experimental observation of the response of the material under a
multi-axial stress condition and high rate of deformation, the constitutive equation is quite
complicated, and the strain- rate sensitivity exponent m, generally depends on the strain rate
applied and increases as the deformation rate increases.

Furthermore, for specific materials, an abrupt increase in the strain rate during the
deformation process causes a substantial increase/decrease in flow stress as seen in
steel/copper (Campbell et al. 1977, Mimura and Tomita, 1991, Tomita and Higo 1993).

Such substantial increase/decrease in the flow stress will be referred to as “positive”

and “negative” strain-rate history dependence, respectively. Such an effect may be accounted
for (see Tomita, 1994) by

g, e
(10.15)
— +
x{l+ABe)"In
I+ £

In (10.15), A and B account fox_the material strain rate and strain history dependence of the
flow stress, respectively, and ¢, and e" are viscoplastic representative strain and its rate
before abrupt charge in strain rate, respectlvely (Tomita and Higo, 1993).

In order to avoid numerical instability and maintain the required accuracy, suitable
integration schemes for the rate-type constitutive equation must be employed. In this context,
for the temperature-independent case, in the Euler method, the size and the time steps must
be determined such that the stress exactly satisfies the yield condition in the course of
yielding (Yamada et al 1968), and the magnitude of the increment of the displacement as
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well as the rotation is restricted to avoid numerical instability (Nagtegaarl and Jong, 1981).

These methods have been extended to the strain rate and temperature-dependent
constitutive equations (Peirce et al. 1984, Rashid and Nemat-Nasser 1992, and Nemat-Nasser
and Li, 1992).

Iterative methods such as the radial return method (Krieg and Krieg, 1977) and mean
normal method (Rice and Tracey 1973) have been developed and extended to different types
of materials.

Return mapping algorithms capable of accommodating the general yield condition
and arbitrary flow hardening rules; nonlinear elastic response for general rate-independent
and rate-dependent behaviour (Ortiz and Simo, 1986); versatile integration algorithms
including their application to the treatment of nonsmooth yield surfaces (de Borst, 1987,
Simo et al 1988, Runesson et al 1988), their accuracy (Ortiz and Popov 1985, and Ortiz and
Simo 1986) and consistent tangent operators (Simo and Taylor 1985, Runesson et al. 1986,
Simo et al. 1988) have been extensively investigated to obtain a converged and accurate
solution.

Runneson et al. (1988) also provides an excellent brief review of the development of
integration schemes. Furthermore, the treatment of large increments of strain (Hughes and
Winget, 1980, Pierce et al, 1984, Simo and Ortiz, 1985, Runesson et al, 1986, Rashid and
Nemat Nasser 1992, Nemat-Nasser and Li, 1992) is indispensable for large strain and
displacement analysis.

As long as the deformation is sufficiently small, the elastic-plastic boundary value

problem has a unique solution which is referred to as the fundamental solution.

When the deformation reaches a certain value, bifurcation from the fundamental

solution becomes possible. The point of bifurcation can be found through the use of Hill’s
general theory of bifurcation and uniquesness (Hill.1958) for elastic-plasti¢ solids. This
theory states that the solution is not unique when a nontrivial solution can be found for the
eigenvalue problem given by the following variational equation

Bifurcation functional
8I=0

@ =f():‘ij + gl v;‘jdV
\"
- T‘:iv;dS
[

(10.16)
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Bifurcation condition (10.16) is valid only when the material follows an associative
flow law, whereby the superscripted asterisk denotes the difference between the fundamental
solutions and the second one. The surface integral in (10.16) arises from the configuration
dependence of the loading. Meantime stress rate X" is related to strain rate D), by 1

(10.17)

Is assumed to be a constitutive
tensor for a linear comparison
solid, in which the plastic parrt of
the constitutive tensor is
employed for the current plastic
zone. (see Tomita,1994).

Is assumed to be symmetric
when the material follows an
associative flow law.

When the bifurcation functional I (Eqn.10.16) is approximated in terms of finite
elements, one can arrive at an approximate functional of the following form

1={6"}7 {K} {5°} (10.18)

where {6} denotes the values of v, at the nodal points. The stationary condition of the
approximate functional with respect to {5‘} yields the following homogeneous algebraic
equation

(K} {6°}=0 (10.19)
When the equation (10.19) has a nontrivial solution, bifurcation may occur.

At every computational step, the vanishing point of the determinant of the coefficient
matrix of (10.19), i.e.

det [K]=0 (10.20)

is checked. Usually, when the sign of the det [K] changes at a specific incremental step, an
iterative method is used to determine the accurate vanishing point of the determinant.

The bifurcation is obtained igen-mode of en
(10.19).
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In this context, reference is made to Kitagawa et al (1980, 1982), de Borst (1989),
Bardet (1990), and Leroy and Chapuis (1991). The special case where two or more
eigenvalues of [K] may simultaneously change sign, has been treated by de Borst (1989).

With reference to condition (10.20), at every computational step of the analysis, the
vanishing of the determinant of the coefficient matrix is checked against several modes. The

first bifurcation point is referred to as the “Critical Bifurcation Point’, and its mode is
referred as the “Critical Bifurcation Mode"

10. 4. Bifurcation Analysis for Specific Constitutive Equations

When the material follows the nonassociative flow law, the bifurcation condition
(10.16) becomes jnvalid because of the nonsymmetry of the tensor L in (10.17).

EXAMPLE :
I. Linear Constitutive Equation

Raniecki (1979) and Raniecki and Brunhs (1981) introduced two comparison solids
to determine the bifurcation point for the material obeying the non-asssociative flow law.

The first comparison-solid is from the “one-parameter family” of “linear comparison
solids™ with the following strain rate constitutive form

"
|

DijkezDijkf__!_ ij ke
E GP q

o ij ke ijke
pY=q"=D¢" n,+EDg" m,

. 10.21
G=4§(H+mijD€““ko) ( )

where H is the hardening modulus and m;; and n;; are the directions of plastic strain rate and
the normal to the yield surface, respectively. Here £ is a positive parameter.

The solid obeying the constitutive eqn. (10.21) is referred to as an “Alternative
Comparison Solid”. Raniecki and Brunhs (1981) proved that if uniqueness is certain for
these comparison solids, then bifurcation is precluded for the underlying materials. The
bifurcation point for these comparison solids provides the lower bound to a solid with the
“non-associative flow law”. However, the still undetermined positive parameter £ in the
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constitutive tensor is a function of the particle position and should be optimized to give the
closest lower bound. For the homogeneous fundamental deformation, the optimal lower
bound can be determined as (e.g., Raniecki, 1979)

(10.22)

The lower bound to the bifurcation point is not ordinarily the bifurcation point of the
underlying material. Consequently, the search for the genuine bifurcation state is replaced
by a search for upper and lower bounds:

i) the lower bound: Here the occurrence of bifurcation is checked against the vanishing
point of the E-value determinant matrix, det [K (£)], expressed in (10.20), at every
step of the analysing of the fundamental solution. With note of the positiveness of
these determinants up to the bifurcation point, the maximization of the determinant
with respect to the positive parameter £ at each step of fundamental analysis
substantially improves the accuracy of the lower bond.

ii) the upper bound: Here the concept of a second-comparison solid, a “nonloading
solid” is introduced and shown with the nonassociative flow law such that the first
eigenstate of such a comparison solid identifies an upper bound to the bifurcation
point of the underlying solid.

II. Nonlinear Constitutive Equation

For a material obeying a nonlinear constitutive equation such as Christoffersen and
Hutchinson’s corner theory (1979), the bifurcation theory should be generalized
(Triantafyllidis 1985).

At same stage of deformation, stress oY, displacement u; and any state variables in the
constitutive equation, as well as their corresponding rates, are known and unique. Then, the
following bifurcation functional, quadratic in ¥, , and bifurcation condition for displacement
prescribed loading are defined as (see Tomita, 1994)

61=0

) AV
\%

(10.23)
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where X' is related toD,, by

IRAUIES SELLS o) (10.24)
In (10.24), L™ is the constitutive moduli tensor of an actual solid in the fundamental state.

The bifurcation functional (10.23) has been used to determine a lower bound for the
first bifurcation. On the other hand, Tvergaard (1982) assumed the uniqueness of stress o,
displacement u; and any state variable in the constitutive equation and employed the
bifurcation functional (10.16) with the actual constitutive moduli tensor in the fundamental
state to obtain the upper bound for the critical load.

10.5. Post Bifurcation Analysis

The solution of the boundary value problem at the bifurcation point can be expressed
by the sum of the fundamental solution and a suitably normalized eigen mode for the
variational equation.

The specific amplitude of the eigen mode is determined so that loading occurs
everywhere in the current plastic zone, except at one point where neutral loading takes place’
(Hutchinson, 1973a). This solution reveals the postbifurcation behaviour just after the
bifurcation point.

Due to the highly nonlinear nature of the postbifurcation behaviour, numerical
analysis appears indispensable, e.g., by employing the virtual work principle with finite
element approximation.

When the materials obeys the constitutive equation derived by the nonassociative
flow law or expressed by the nonlinear relation between the stress and strain. rates, the
bifurcation point obtained does not necessary provide the real bifurcation point. Thus, the
post-bifurcation behaviour must be traced approximately by employing bodies with initial
imperfections, through, again, the virtual work principle.

The proper magnitude of imperfection which depends on the problems and the
significant features of the computational facility, must be introduced to simulate
approximate bifurcation and post bifurcation behaviour (Tomita et al. 1984).
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10.6. Plastic Instabilities in Specific Problems
10.6.1. INSTABILITY BEHAVIOUR OF CIRCULAR TUBES
The problem of predicting the deformation behaviour of an elastic-plastic tube
subjected to a combined load is an important one in mechanics and in engineering
applications. Thus, significant research effort has been undertaken on this topic so far.
Following Tomita (1994), the presentation below concentrates on axisymmetric and
non-axisymmetric bifurcation and post-bifurcation behaviour of elasto-plastic circular tubes

under lateral pressure and axial load.

For axially plane strain problems, the bifurcation functional has the form (Chu 1979,
Tomita et al., 1981).

(10.25)

where p, and p, are internal and external pressure, respectively. B, and C, are matrices
depending on the physical components of the constitutive tensor and a bifurcation mode m.

The bifurcation functional (10.25) and its slightly extended version have been
extensively employed in the prediction of the onset of bifurcation for internal pressure (Chu
1979, Tomita et al 1981, Reddy 1982) and external pressure (Tomita and Shindo 1982) under
plane strain conditions, and for the combined loading condition of internal pressure and axial
force (see Tomita, 1994). These are considered frequent collapse problems for design

purposes.

On the other hand, although the number of investigations is rather restricted, the
initial to intermediate post-bifurcation behaviour (Tomita et al 1981, Tomita and Shindo
1982) and localization of the deformation accompanied by shear bands (Larrson et al. 1982)
have been clarified. However, these studies are restricted to the deformation under axially
plane strain conditions (Tomita, 1994)..

Tomita et al. (1984, 1986) investigated the loading path-dependent bifurcation and
post-bifurcation behaviour of tubes subjected to axial tension and internal pressure, and the
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localization behaviour of tubes under axial load and external pressure.

Fig. 10.1 shows a few results obtained by Tomita et al. (1986). The positive axial

loads substantially lower the maximum pressure, however, these effects diminish as

deformation proceeds. The Bauschinger effect is quite noticeable for a tube with positive
axial load. In Fig. 10.1b, the critical displacements at which the stress system first satisfies
Hill and Hutchinson’s surface instability and shear band formation condition (Hill and
Hutchinson 1975) are shown. The influence of axial bond, the Bauschinger effect and corner
formation, including the corner angle, and the mobility of the yield surface on the formation
of uneveness and shear band, and their growth were investigated (Tomita, 1994).

= Meximum pressure

» Peylelding —— m=00
o) & urface Instaditity :.: gsss
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Figure 10.1. Bifurcation and postbifurcation behaviour of thick-walled tubes subjected to
external pressure p and axial force L. (a) Computational model and notation. (b) Pressure
p versus displacement u relation. (c) Axial strain €, versus displacement u relation. m:
parameter defining partial translation of yield surface. m = 0: no rotation, g,: initial yield
stress. “Reprinted from /nt. J. Mech. Sci. 28 (§), Tomita, Y., Shindo, A., Kim, Y. S. and
Michiura, A., Deformation behaviour of elastic-plastic tubes under external pressure and
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10.7. Instability Propagation (Metallic and Polymeric Materials)

For many ductile materials, once inhomogeneous deformation has started, further
flow localization is accompanied by an increase in deformation, which in turn leads to final
fracture.

On the other hand, the necking of many polymers initially develops in the specimen
in a manner similar to that observed for ductile materials, and this subsequently propagates
along the specimen under an essentially steady-state condition (Hutchinson and Neale 1983).
In case of polymers, however, the “re-stiffening effect”, which is observation in the high-
strain region in polymer and is generally caused by the alignment of material chains,
randomly oriented in the undeformed state, is seen to be responsible for neck development
and propagation.

The mechanical aspects of instability propagation in polymeric material have recently
received much attention:

- Hutchinson and Neale (1983) and Chater and Hutchinson (1984) investigated the
neck propagation of tension blocks, bulge propagation in long cylindrical balloons
and the buckle propagation of tubes under lateral pressure in terms of simple one-
dimensional anlaysis or approximate steady-state analysis.

- Fig. 10.2 shows the uniaxial stress-strain relation, corresponding elongation curves
and deformed shape of the specimens (Tomita and Hayashi, 1991& 1993). After the
maximum load point, necking starts and it develops until the load attains the load
minimum. Then it propagates with an almost constant load. The propagation may
not appear when the strain at the re-stiffening point is smaller than strain at the
maximum load point.

- Except under conditions of very slow deformation, the propagation behaviour of
instability manifests different features associated with frictional heating of the
polymer undergoing large deformation.

In a subsequent study, the effects of strain rate sensitivity (Tugcu and Neale,
1987&1988) and the temperature dependency (Tugcu and Neale, 1990, Tugcu et al, 1991,
and Tomita and Hayashi, 1991&1993) on the neck propagation behaviour have been
investigated with a constitutive equation similar to (10.13).

Figure 10.3 shows the thermo-elastoviscoplastic neck propagation behaviour. In this
Figure, U is the normalized end displacement rate and AD stands for a locally adiabatic
process, otherwise thermocoupled analysis is performed.
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Figure 10.2. Deformation behaviour of polymeric material under tension. (a) Uniaxial true
stress o-natural strain € relations for different temperatures, u: end displacement, 2L: initial
length of the specimen. (b) Load o- elongation /L curves under quasi-static deformation
rate. (c) Deformed specimen profiles at w/L = 0.8 for quasi-static and isothermal
deformation. “Reprinted from Int. J. Solids Structures 30(2), Tomita, Y., and Hayashi,
K., Thermo-elasto-viscoplastic deformation of polymeric bars under tension, pp. 225-35,
1993, with permission from Elsevier Science”. See, also Tomita and Hayashi (1991).
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As shown in Figure 10.3, at a low rate of deformation, the stabilization effect by re-
stiffening overcomes the destabilization effect due to thermal softening, and the neck
propagates along the tensile direction with a heat source which can be seen in the temperature
distribution along the tensile axis.

Thus, the deformation-induced heating and its conduction strongly affect the neck
propagation behaviour for a relatively low rate of deformation.

As a result, predictions based on steady-state analysis with the adiabatic assumption
will provide an improper estimation because the deformation-induced heating tends to cause
nonsteady-state deformation, which increases as the material strain rate sensitivity increases
(Tomita and Hayashi, 1991&1993).
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Figure 10.3. Thermo-elasto-viscoplastic neck propagation behaviour. (a) Deformed profiles
for different strain rates of 2x10-* U, AD: with assumption of locally adiabatic process. (b)
Temperature distribution along tension axis y. wu: end displacement, 2L: initial length,
T, : initial temperature, 296 °K, m: strain-rate sensitivity exponent. “Reprinted from Int.
J. Solids Structures 30(2), Tomita, Y., and Hayashi, K., Thermo-elasto-viscoplastic
deformation of polymeric bars under tension, pp. 225-35, 1993, with permission from
Elsevier Science”. See, also Tomita and Hayashi (1991).
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Furthermore, anisotropy caused by microscopic mechanisms of the molecular chains
and the distribution of their orientation due to excessive deformation is quite important:

Boyce et al (1988) developed a three-dimensional constitutive model describing the
inelastic response, including the strain rate, temperature and strain softening/hardening of
glassy polymers, based on the micromolecular structures of materials and corresponding
micromechanisms of plastic response.

Boyce and Arruda (1990) verified that the constitutive equation can predict the major
aspects of the material well.

Since the identification of the constitution response is quite difficult due to the
complicated nature of the deformation behaviour of polymeric material, including the special
attention to experimental methods (G’Sell and Jonas, 1979), further developments in the
hybrid strategy in cooperating precise experiments and computational simulation (Tomita
and Hayashi, 1991) are expected to yield a better understanding of the actual response of the
polymeric material.

10.8. Flow Localization of Thermo-Elasto-Viscoplastic Solids

Localization of plastic flow into shear bands has been observed in various materials
and is recognized to be a very important precursor to failure.

10.8.1. RATE-INDEPENDENT MATERIALS

Intensive studies have been performed on different classes of rate independent
materials (e.g., Rice 1976 and Needleman and Rice, 1978 for development of localization
and have clarified the critical dependence of the localization conditions and the localization
processes on the constitutive description.

10.8.2 RATE-DEPENDENT MATERIALS

The real strain-rate-dependent flow localization manifests itself as different features
depending on the rate of deformation, with the understanding that, thermocoupled analysis
is inevitable (Chung and Wagoner, 1986, and Tomita et al, 1990)

Thermo-coupled flow localization analyses without the inertial effect have been
carried out by Lemonds and Needleman (1986 a, b), Kim and Anand (1987), Nemat-Nasser
(1988), Nemat-Nasser et al (1989), Tomita et al (1990), Tomita and Nakao (1991, 1992) and
Zbib and Jubran (1992) for plane strain tension.

Kim and Anand (1987), Nemat-Nasser (1988), Nemat-Nasser et al (1989) and Zbib
and Jubran (1992) assumed the adiabatic process which represents an upper bound on the



71

temperature, whereas Lemonds and Needleman (1986a,b), Tomita et al. (1990) and Tomita
and Nakao (1991,1992) accounted for the heat conduction. Plane strain quadrilateral
elements with hourglass control (Nemat-Nasser et al 1989, Zbib and Jubran 1992) and
crossed trangular elements (Lemonds and Needleman, 1986 a, Tomita et al, 1990, and
Tomita and Nakao, 1991, 1992) are employed. An intensification of shear localization has
been observed for large specimens, and the adiabatic assemption may provide suitable
information on the specific order of the strain rate, which increases as the specimen size
decreases (Tomita et al, 1990). Further, it has been clarified that the localization of the
deformation is delayed by the strain-rate effect, strain-gradient dependent of the yield stress,
as seen in equation (10.26) below

g=0(,e,T)-cV’e (10.26)

where o is the local flow stress.

The results also illustrate that the interactions of material properties and thermal
softening and the growth of voids are two competing and interacting softening mechanisms
in porous materials.

Dynamic flow localization analyses have been carried out by Needleman (1989) and
Batra and Liu (1989, 1990) for plane strain compression. Needleman (1989) employed the
softening constitutive equation as a simple model for a thermally softening solid. Then the
problem is treated from a purely mechanical point of view with initial homogeneity of the
flow stress near the centre of the block.

Batra and Liu (1989, 1990) investigated a similar problem by introducing a
temperature bump at the center of the block obeying thermally softening viscoplastic solids.
Thermocoupled analyses have been performed. The results are in qualitative agreement with
those of Needleman (1989). Except for a significant delay in shear band development due
to the inertial effect, the main features of shear band development are the same as under the
quasi-static loading condition.

Wright and Walter (1987) studied the problem of dynamic simple shear of a finite
slab of incompressible material and showed that in the late localization stages, the
conductivity and strain rate set the width of the shear band.

Batra and Zhang (1990) and Batra and Zhu (1991) investigated shear band
development in a viscoplastic cylinder and bimetallic body containing two voids under
dynamic loading.

Figure 10.3 shows the results of the plane strain tension blocks under the average
deformation rate /L = 2000/s and with both ends free and fixed under conditions without
and with inertial force (Tomita and Higo 1993). A locally adiabatic condition is assumed.



u/L=0.150

Figure 10.4. Representative strain distribution in plane strain blocks, L=24 mm, m=0.01.
(a) Without inertial effect. (b) With inertial effect. “Reprinted from Int. J. Mech. Sci.
35(12), Tomita, Y. and Higo, T., Plane-strain flow localization in tension and compression
of thermo-elasto-viscoplastic blocks under high rates of deformation, pp. 985-94, 1993, with
permission from Elsevier Science”.

0.175 ®) 0.075 0.100

With reference to Fig. 10.4, in the case without inertial force (a), regardless of the boundary
condition, localization predominantly develops near the center of the specimen, whereas
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irregular flow localization is observed in the case with inertial force (b). The propagation of
the dynamic force and boundary constraints play an important role in the onset and
development of flow localization.

Needleman and Ortiz (1991) gives a complete mechanistic explanation concerning the
interaction between shear bands, free surfaces and interfaces.

005}

[ O=u/(1,¢)
CO: Conductive
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Figure 10.5. Growth of undulation for dynamic compression of blocks near the stress-free
surface. “Reprinted from /nt. J. Mech. Sci. 35(12), Tomita, Y. and Higo, T., Plane-strain
flow localization in tension and compression of thermo-elasto-viscoplastic blocks under
high rates of deformation, pp. 985-94, 1993, with permission from Elsevier Science”.

Fig. 10.5 (Tomita and Higo, 1993) shows the compression of the strip under a wide
range of deformation rates U = u/({ ¢, ) = 102 - 106:
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- A deformation process with heat conduction (CO) and a locally adiabatic condition
(AD) have been assumed for a low and high rates of deformation, respectively (see,
also Tomita et al. 1993).

- Fig. 10.4 (left) shows the evolution of the undulation of the stress force surface.

- Fig. 10.4 (right) depicts the representative strain distribution at a specific stage of
compression g, = - 0.25.

- The general feature of the flow localization is essentially the same as that seen in the
quasi-static case (Tvergaard, 1982, Kitagawa and Matsushita, 1987).

- The surface undulation abruptly starts to increase at a specific point (which can be
approximately obtained by linear perturbation analysis), and leads to the development
of a shear band connecting the highly strained regions beneath the highly strained
region in a zigzag faction.

- At a low rate of deformation, thermal softening is substantially suppressed by the
heat conduction and causes significant delay in the evolution of the undulation and
strain distribution.

- Competing effects of thermal softening and inertia are observed in the evolution of
undulation and representative strain at a relatively high rate of deformation

At very high rates of strain, over 10° s, the inertial effect overcomes the thermal
softening and causes significant delay in flow localization and greater thickness of the shear
localization zone.

10.9. Effect of Material Rate History
Fig. 10.6 (Tomita and Higo 1993) shows the effect of material strain rate history
dependence on flow localization behaviour. Five different types of computations with the

end velocity shown in Fig. 10.6a have been performed:

The difference observed between cases I and II is attributed to the dynamic effect.
As discussed above, the inertial force again stabilizes the deformation.

Comparison of cases Il and IV clarifies the effect of the material strain-rate history
dependence on the flow localization.

The comparison for cases II and III clarifies that the dynamic deformation
subsequently applied to the quasi-static deformation stabilizes the deformation. -
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Since the stabilization effect of strain rate history dependence suppresses the
development of flow localization, the ductility of the material is clearly increased by
subsequent dynamic loading after pre-straining. The efficiency of increasing the ductility
depends on the magnitude of pre-straining, as seen in case V.

10.10. Three-Dimensional Effects

The three dimensional aspects of localized deformation without inertial effect (Leroy
and Ortiz 1990; Zbib and Jubran (1992) have been investigated:

- Zbib and Jubran (1992) assumed adiabatic deformation and clarified the smooth
transition of plane stress to plane strain deformation by employing very thin to thick
specimens.

- Fig. 10.7 (Zbib and Jubran, 1992) shows the deformed meshes with shear bands.

- A very strong three-dimensional geometric effect on the shear banding is observed.
The orientation of the shear bands are 35.25° and 45°, respectively, and they are
consistent with the theoretical predictions. Again, a softening mechanism and an
initial imperfection are among the many cause of shear banding. The multiaxial
effect stabilizes the deformation and yields a delay in localization (Zbib and Jubran
1992).

10.11. Problems
1. Explain briefly the following terms:
- Associative material
- Conservative loading
- Bifurcation state
- Critical bifurcation point vs. Critical bifurcation point
- Upper and lower bounds of a bifurcation state.
2. Comment briefly on the aim of “Hill’s bifurcation theorem”.
3. What is configuration-dependent loading ?
4. What constitute uniqueness criteria in mechanics of solids ?

5. What are conservative and non-conservative problems ?

6. Discuss briefly the three-dimensional effect on shear banding in a metallic material.



76

10.12. References

Bardet, P. (1990) Finite clement analysis of plane strain bifurcation within compressible solids, Computers
& Structures 36, 993-1007

Batra, R. C. and Liu De-Shin (1989) Adiabatic shear banding in plane strain problems, J. appl.Mech.
56, 527-34,

Batra, R. C. and Liu De-Shin (1990) Adiabatic shear banding in dynamic plane strain compression of a
viscoplastic material, Int. J. Plasticity 6, 231-46.

Batra, R. C. and Zhang, X. T. (1990) Shear band development in dynamic loading of a viscoplastic cylinder
containing two voids, Acta Mech, 85, 221-34,

Batra, R. C. and Zhu, Z. G. (1991) Dynamic shear band development in a thermally softening bimetallic body
containing two voids, Acta Mech. 86, 31-52.

Borst, R. de (1987) Integration of plasticity equation for singular yield functions, Computers & Structures 26,
p. 823-29,

Borst, R. de (1989) Numerical methods for bifurcation analysis in geomechanics, Ing. Arch. 89, 160-74.

Boyce, M. C,, Parks, D. M. and Argon, A. S. (1988) Large inelastic deformation of glassy polymers Part I:
Rate dependent constitutive model, Mech. Mat. 7, 15-33.

Boyce, M. C. and Arruda, M. (1990) An experimental and analytical investigation of the large strain
compressive and tensile response of glassy polymers, Pol. Engng. Sci. 30, 1288-98.

Budiansky, B. (1959) Assessment of deformation theory, J. Appl. Mech. 26, 259-64.

Campbell, ]1.D., Eleiche, A M. and Tsao, M.C.C. (1977) Fundamental Aspect of Structural Alloy Design,
Plenum, New York, pp. 545.

Chater, E. and Hutchinson, J. W. (1984) On the propagation of bulges and buckles, J. appl. Mech. 51, 269-
71.

Christoffersen, J. and Hutchinson, J. W. (1979) A class of phenomenological corner theories of plasticity, J.
Mech. Phys. Solids 27, 465-87.

Chu, C. C. (1979) Bifurcation of elastic-plastic circular cylindrical shells under internal pressure, J. Appl.
Mech. 46, 889-94.

Chung, K. and Wagoner, R. (1986) Invariance of neck formation to material strength and strain rate for
power-law -materials, Metall Trans. A17, 1632-3. '

Dafalias, J.F. (1983) Co-rotational rates for kinematic hardening at large plastic of formations, J. Appl. Mech.
50, 561-5.

Dafalias, J.F. and Aifantis, E.C. (1990) On the macroscopic origin of the plastic spin, Acta Mech. 82, 31-48.

Dubey, R. N. (1970) Variational method for non conservation problems, J. Appl. Mech. 37, 133-6.

Gotoh, M. (1985) A class of plastic constitutive equation with vertex effect - 1, Int J. Solids & Structures 21,
1101-16.

Gurson, A L. (1977) Continuum theory of ductile rupture by void nucleation and growth, Part 1 - Yxeld
criteria and flow rules for porous ductile media, J. Eng. Mat. Tech. 99, p. 2-15.

G’Sell, G. and Jonas, C. (1979) Determination of the plastic behaviour of solid polymers at constant true
strain rate, J. Mater. Sci. 14, 583-91.

Hill, R. (1958) A general theory of uniqueness and stability in elastic-plastic solids, J. Mech. Phys. Solids 8,
236-49.

Hill, R. (1962a) Acceleration waves in solids, J. Mech. Phys. Solids 10, 1-16.

Hill, R. (1962b) Uniqueness criteria and extremum principles in self-adjoin problems of continuum-
mechanics, J. Mech. Phys. Solids 10, 185-94.

Hill, R. and Hutchinson, J.W.(1975) Bifurcation phenomena in the plane tension test, J. Mech. Phys. Solids
23, 236-64.

Hughes, T. J. R. and Winget, J. (1980) Finite rotation effects in numerical integration of rate constitutive
equations arising in large deformation analysis, Int. J. Num. Meth. Engng. 18, 1862-7.



77

Hutchinson, J.W. (1973a) Post bifurcation behaviour in the plastic range, J. Mech. Phys. Solids 21,163-90.

Hutchinson, J.W. (1973b) Finite strain analysis of elasto-plastic solids and structures, in Numerical Solution
of Nonlinear Structural Problems, Hartung, R F. (Ed.), ASME, pp. 17-29.

Hutchinson, J. W. and Neale, K.W. (1973) Sheet necking. Il. Time independent behaviour, in Mechanics and
Sheet Metal Forming, Koistinen, D.P. and Wang, N.M. (Eds), Plennum Press, pp. 127-53.

Hutchinson, J. W. and Neale, K. W. (1983) Neck propagation, J. Mech. Phys. Solids 31, 405-26.

Kim, K. H. and Anand, L. (1987) A note on adiabatic flow localization in visco-plastic solids, in:
Computational Methods for Predicting Material Processing Defects, M. Predeanu (ed.), Elsevier,
London, pp.181-92.

Kitagawa, H. and Matsushita, H. (1987) Flow localization in elastic-plastic material developing from stress-
free surface, Int. J. Solids Structures 23, 351-68.

Kitagawa, H., Seguchi, Y. and Tomita, Y. (1972) An incremental theory of large strain and large
displacement problems and its finite element application, Ing. Arch. 41, 213-24.

Krieg, R. D. and Krieg, D. B. (1977) Accuracies of numerical solution method for the elastic-perfectly plastic
model, Trans ASME, J. Pressure Vessel Tech. 99, 510-15.

Larrson, M., Needleman, A., Tvergaard, V. and Storakers, B. (1982) Instability and failure of internally
pressurized ductile metal cylinder, J. Mech. Phys. Solids 30, 121-54.

Lemonds, J. and Needleman, A. (1986a) Finite element analyses of shear localization in rate and temperature
dependent solids, Mech. Materials §, 339-61.

Lemonds, J. and Needleman, A. (1986b) An analysis of shear band development incorporating heat
conduction, Mech. Materials 8, 363-73.

Leroy, Y.M. and Ortiz, M. (1989) Finite element analyses of strain localization in frictional materials, Int.
J. Num. Anal. Mech. Geomech. 13, 53-74

Leroy, Y.M. and Ortiz, M. (1990) Finite element analysis of transient strain localization phenomena in
frictional solids, Int. J. Num. Anal. Meth. Geomech. 13, 53-74.

Leroy, Y.M. and Chapuis, O. (1991) Localization in strain-rate-dependent solids, Comp. Meth. Appl. Mech.
Engng. 90, 969-86.

Loret, B. (1983) On the effects of plastic rotation in finite deformation of anisotropic elastplastic materials,
Mech. Materials 2, 287-304

Minura, K. and Tomita, Y. (1991) Constitutive relations of mold steel and alpha-titanium at high rates under
multiaxial loading condition, Journal de Physique IV, DYMAT 91, Les editions de Physique, France,
813-20.

Nagtegaarl, J.C. and de Jong, J.E. (1981) Some computational aspects of elastic-plastic large strain analysis,
Int. J. Num Meth. Eng. 17, 15.

Neale, K.W. (1980) Phenomenotogical constitutive laws in finite plasticity, SM arch 6, 79-128.

Needleman, A. (1989) Dynamic shear band development in plane strain, J. appl. Mech. 56, 1-9.

Needleman, A. and Ortiz, M. (1991) Effects of boundaries and interfaces on shear band localization,
Int. J. Solid Structures 28, 859-77.

Needleman, A. and Rice, J. R. (1978) Limits to ductility set by plastic flow localization, in: Mechanics of
Sheet Metal Forming, Koistinen, D. P, and Wang, N -M. (Eds.), Plenum Press, New York, pp. 237-
67.

Needleman, A. and Tvergaard, V. (1977) Necking of biaxially stretched elastic plastic circular plates, J.
Mech. Phys. Solids 285, 159.

Nemat-Nasser, S. (1988) Micromechanics of failure at high strain rate: Theory, experiments, and
computations, Computer & Structures 30, 95-104.

Nemat-Nasser, S., Chung, D. T. and Taylor, L.M. (1989). Phenomonological modelling of rate-dependent
plasticity for high strain rate problems, Mech. Materials 7, 319-44.

Nemat-Nasser, S. and Li, Y.F. (1992) A new explicit algorithm for finite-deformation elastoplasticity and
elastoviscoplasticity: Performance evaluation, Computers and Structures 44, 937-63.



78

Ortiz, M. and Popov, E.P. (1985) Accuracy and stability of integration algorithms for elastoplastic
constitutive relations, Int. J. Num. Mech. Eng. 21, pp. 1561-76.

Ortiz, M. and Simo, J. C. (1986) An analysis of a new class of integration algorithms for elasto plastic
constitutive relation, /nt. J. Numerical Meth Eng. 23, p.353-66.

Peirce, D., Shih, C.F. and Needleman, A (1984) A tangent modulus method for rate dependent solids,
Computers & Structures 18, 875.

Raniecki, B. (1979) Uniqueness criteria in solids with non-associated plastic flow laws at finite deformations,
Bull. Acad. Pol. Ser. Sci. Tech. 27, 7219.

Raniecki, B. and Brunhs, O. (1981) Bounds to bifurcation stresses in solids with non-associated plastic flow
law at finite strain, J. Mech. Phys. Solids 29, 153-72.

Rashid, M.M. and Nemat-Nasser, S. (1992). A constitutive algorithm for rate dependent plasticity, Comp.
Mech Appl. Mech. Eng. 94, 201-28.

Reddy, B. D. (1982) A deformation-theory analysis of the bifurcation of pressurized thick-walled cylinders,
Q. J. Mech. Appl. Math. 35, 183-96.

Rice, J.R. (1976) The localization of plastic deformation, Proc. 14" JUTAM congress, Koiter, W. (ed.), North
Holland, Amsterdam, 207-20,

Rice, J.R. and Tracey, D.M. (1973) Numerical and Computational Methods in Structural Mechanics,
Academic press, pp. 585.

Rudnicki, J.W. and Rice, J.R. (1975) Conditions for the localization of deformation in pressure, sensitive
dilutant materials, J. Mech. Phys. Solids 23, p. 371-94.

Runneson, K., Samuelsson, A. and Bernspang, L. (1986) Numerical Technique in plasticity including
solution advancement control, /nt. J. Num. Math. Engng 22, 769-88.

Runneson, K., Sture, S. and William, K. (1988) Integration in computational plasticity, Computers &
Structures 30, 119-30.

Sewell, M.J. (1967) On configuration dependent loading, Arch. Rate Mech. Anal. 23, 327-51.

Simo, J.C., Kennedy, J.G. and Govindjee, S. (1988) Nonsmooth multi-surface plasticity and viscoplasticity.
Loading /unloading conditions and numerical algorithms, Int. J. Num Mech. Eng. 26, 2161-85.

Simo, J.C. and Ortiz, M. (1985) A unified approach to finite deformation elastoplastic analysis based on the
use of hyper elastic constitutive equations, Com. Meth. Appl. Mech. Engng 49, pp. 221-45.

Simo, J.C. and Taylor, R.L. (1985) Consistant tangent operators for rate -independent elastoplasticity,
Comp. Meth. Appl. Mech. Eng. 48, 101-18.

Stéren, S. and Rice, J.R. (1975) Localized necking in thin sheets, J. Mech. Phys. Solids 23, 221-41.

Timoshenko, S. P. and Gere, J. M. (1961) Theory of Elastic Stability, 2™ Edition, McGraw-Hill, New York.

Taylor, G.I. and Quinney, H. (1934) The latent energy remaining in a metal after cold working, Proc. Roy
Soc. London A 143, p. 307.

Tomita, Y. (1994) Simulations of plastic instabilities in solid mechanics, Appl. Mech. Rev. 47(6), Part 1, 171-
205,

Tomita, Y. and Hayashi, K. (1991) Deformation behaviour in elasto-viscoplastic polymeric bars under
tension, Proc. Int. Symp. on Plasticity and its Current Applications, Grenoble, France, Boehler, J.
P. and Khan, A S. (Eds), Elsevier, pp. 524-27.

Tomita, Y. and Hayashi, K. (1993) Thermo-elasto-viscoplastic deformation of polymeric bars under tension,
Int. J. Solids Structures 30(2), 225-35.

Tomita, Y. and Higo, T. (1993) Plane-strain flow localization in tension and compression of thermo-elasto-
viscoplatic blocks under high rates of deformation, Int. J. Mech. Sci. 35, 985-94,

Tomita, Y. and Nakao, T. (1991) Flow localization of elasto-viscoplastic tension blocks, Proc. ICM6, Jono,
M. and Inoue, T. (Eds.), Pergamon Press, New York, pp. 1997-2002.

Tomita, Y., Mimura, K. and Sasayama, T. (1993) Effects of intermediate process annealing on surface
roughening and forming limit in polycrystalline thin sheet metal subjected to tension, MECA-
MAT’91, Large plastic deformations, Teodosiu, C., Raphanel, J. L. and Sidoroff, F. (Eds.),



79

Balkema, Rotterdam, pp. 177-83.

Tomita, Y. and Nakao, T. (1992) Shear localization in thermo-elasto-viscoplastic plane strain block, Proc.
TUTAM Symposium, Finite Inelastic Deformations, Theory and Application, Besdo, D. and Stein,
E. (Eds), Springer-Verlag, 179-88.

Tomita, Y. and Shindo, A. (1982) On the bifurcation and post-bifurcation behaviour of thick circular tubes
under lateral pressure, Comp. Meth. Appl. Mech. Engng. 35, 207-19.

Tomita, Y. and Shindo, A. (1985) Bifurcation behaviour of thin square elastic-plastic orthotropic plates
subjected to diagonal tension, Proc. Considere Memorial Symposium, Salencon, J. (ed.), Ecole
Nationale des Ponts et Chaussés, pp. 203-13.

Tomita, Y. and Shindo, A (1990) Wrinkling behaviour in thin-walled bodies during plastic forming,
computational plasticity, Inoue, T., Kitagawa, H. and Shima, S. (Eds), CIMR?7, Elsevier, pp. 165-78.

Tomita, Y., Shindo, A., Kim, Y. S. and Michiura, K. (1986). Deformation behaviour of elastic plastic tubes
under external pressure and axial load, Int. J. Mech. Sci. 28, 263-74.

Tomita, Y., Shindo, A., and Kitagawa, H. (1981) Bifurcation and post bifurcation behaviour of internally
pressurized elastic-plastic circular tubes under plane strain conditions, Int. J. Mech. Sci. 23, 723-32.

Tomita, Y., Shindo, A. and Nagai, M. (1984). Axisymmetric deformation of circular elastic-plastic tubes
under axial tension and internal pressure, Int. J. Mech. Sci. 26, 437-44.

Tomita, Y., Shindo, A. and Sasayama, T. (1990) Plane strain tension of thermoelastic viscoplastic blocks, /nt.
J. Mech. Sci 32, 613-22.

Triantafyllidis, N. (1985) Puckering instability phenomena in the hemispherical cup test, J. Mech. Phys.
Solids 33, 117-39.

Tugcu, P. and Neale, K. W. (1987) Analysis of plane-strain neck propagation in viscoelastic polymeric films,
Int. J. Mech. Sci. 29, 793-805.

Tugcu, P. and Neale, K. W. (1988) Analysis of neck propagation in polymeric fibers including the effects of
viscoplasticity, J. Engng. Mat. Tech. 110, 395-400.

Tugcu, P. and Neale, K. W. (1990) Cold drawing of polymers with rate and temperature dependent properties,
Int. J. Mech. Sci. 32, 405-16.

Tugcu, P., Neale, K. W., Marques-Lucerno, A. (1991) Effect of deformation induced heating on the cold
drawing of polymeric films, J. Engng. Mat. Tech. 113, 104-11.

Tvergaard, V. (1978) Effects of kinematic hardening on localization necking in biaxiaily stretched sheets, Int.
J. Mech. Sci. 20, 651-58.

Tvergaard, V. (1981) Influence of voids on shear band instabilities under plane strain localization, /nt. J.
Fracture 171, p. 389-437.

Tvergaard, V. (1982 ) Influence of void nucleation on ductile shear fracture at a free surface, J. Mech. Phys.
Solids 30, 399-425.

Tvergaard, V. (1987) Effect of yield surface curvature and void nucleation on plan flow localization, J. Mech.
Phys. Solids 38, p. 43-60.

Wright, T. W. and Walter, J. W. (1987) On stress collapse in adiabatic shear bands, J. Mech. Phys. Solids
38, 701-20.

Yamada, Y., Yoshimura, N. and Sakurai, T. (1968) Plastic stress stain matrix and its application for the
solution of elastic-plastic problems by finite element method, /nt. J. Mech. Sci. 10, 343-54.

Zbib, H. M. and Jubran, J. S. (1992) Dynamic Shearbanding: A three-element analysis, Int. J. Platicity 8,
619-41.



80

in T
: = = [
0° T T TraT1 2T1 2Ti+Ty

CaseV

Figure 10.6. (a) Computational model for compression of blocks. Cases I, II: Constant
velocity and without and with inertial effect, respectively. u, = 0, T, = 0, u/L=10"s". Cases
111, TV and V: with velocity jump at t = T, and flow stresses exhibiting negative dependence,
no dependence and positive dependence on strain rate history, respectively. u, /L = 0.002
s', u, /L = 10*s . Case VI: Case V with velocity jump at t = 2T, , L = 1.0 mm. (b)
Representative strain distribution at different stages of deformation during the dynamic
compression of plane-strain blocks. Case I-VI correspond to those in (a). “Reprinted from
Int. J. Mech. Sci. 35(12), Tomita, Y. and Higo, T., Plane-strain flow localization in tension
and compression of thermo-elasto-viscoplastic blocks under high rates of deformation, pp.
985-94, 1993, with permission from Elsevier Science”.
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Figure 10.7. Dynamic tension of blocks with different thicknesses. “Reprinted from /nt.
J. of Plasticity 8, Zbib, H. M. and Jubran, J. S., Dynamic shear banding: A three-
dimensional analysis, pp. 619-41, 1992, with permission from Elsevier Science”.
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CHAPTER 11
ELASTIC WAVE PROPAGATION

11.1. Introduction

When a localized disturbance is applied suddenly into a medium, it will propagate to other
parts of this medium. The local excitation is not detected at other positions of the medium
instantaneously, as some time would be necessary for the disturbance to propagate from its
source to other parts of the medium. This simple fact constitutes a general basis for the
interesting subject of "wave propagation". Well-cited examples of wave propagation in
different media include, for instance, the transmission of sound in air, the propagation of a
seismic disturbance in the earth, the transmission of radio waves, among others. In the
particular case, when the suddenly applied disturbance is mechanical, e.g., an impact force,
the resulting waves in the medium are due to mechanical stress effects and, thus, these waves
are referred to as ""mechanical stress waves", or simply “stress waves”. Our attention in this
text is restricted to the study of the propagation of stress waves in engineering materials.

In rigid body dynamics it is assumed that, when an external force is applied to any one point
of the body, the resulting effect sets every other point of the body instantaneously in motion,
and the applied force can be considered as producing a linear acceleration of the whole body,
together with an angular acceleration about its center of gravity. In the theory of deformable
media, on the other hand, the body is considered to be in equilibrium under the action of the
external applied forces, and the occurring deformations are assumed to have reached their
equilibrium static values. This assumption could be sufficiently accurate for problems in
which the time between the application of the force and the setting up of effective equilibrium
is short compared with the time in which the observation is made. Meanwhile, If the external
force is applied for only a short period of time, or it is changing rapidly, the resulting effect
must be considered from the point of view stress wave motion.

Mechanical stress waves originate due to a forced motion of a portion of a deformable
medium. As the other parts of the medium are deformed, as a result of such motion, the
disturbance is transmitted from one point, of the medium, to the next and the disturbance, or
wave, progresses through the medium. In this process, the resistance offered to deformation
by the consistency of the medium, as well as to the resistance to motion due to the inertia,
must be overcome. As the disturbance propagates through the medium it carries along
various amounts of of kinetic and potential energies. Energy can be transmitted over
considerable distances by wave motion. The transmission of energy is effected because
motionjis passedionfromione particle toithenext and not by any sustained bulk motion of the
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entire medium. Mechanical waves are characterized by the transport of energy through
motions of particles about an equilibrium position. Thus, bulk types of motion of a medium
such as those occur, for instance, in the turbulence of a fluid are not classified as wave
motion.

As mentioned above, deformability and inertia are essential properties of a medium for the
transmission of mechanical waves. If the medium were not deformable, any part of the
medium would immediately experience a disturbance in the form of a rigid body acceleration
upon the application of the localized excitation. Similarly, if a hypothetical medium were
without inertia there would be no delay in the displacement of particles and the transmission
of the disturbance from particle to particle would be affected instantaneously to the most
distant particle.

In our presentation of the subject of wave propagation, we consider the solid medium to be
a continuum. Hence, the mechanics of wave motion in the medium is dealt with from a
continuum mechanics point of view. The basic concepts of continuum mechanics are briefly
introduced in Chapter 2. In a continuum, the disturbance is generally considered to spread
outward, from the source (the original disturbance), in a three-dimensional fashion. During
their motion, waves propagating in a solid may encounter or interact with boundaries of the
medium. On striking a boundary, a part or whole of an incident wave may be reflected and
the mode of propagation of the wave may change.

In recent years, there has been considerable interest in the subject of wave propagation from
both theoretical and experimental points of view. Such interest was motivated primarily by
the advancements in the area of testing and measurement techniques. With the recent
progress in fields such as electronics and laser optics, stress waves of high frequency can be
now produced and detected easily. This has been particularly pronounced in the important
domains of ultrasonics and acoustic emission. Another equally important reason for the
ensuing interest in the subject of wave propagation is the continuous emerging of newly
developed industrial materials. In this, the study of the phenomenon of wave motion has been
able to identify microstructural problems and assist in the development of homogeneous and
inhomogeneous material systems.

For a historical background of the subject of wave propagation, the reader is referred to
Kolsky (1963), Tolosty (1973), Graff (1975) and Davis (1988), among others. For a review
of the experimental methods that are commonly employed in producing and detecting stress
waves in solids, reference is made, for instance, to the books by Hetenyi (1950), Dove and
Adams (1964), Dally and Riley (1965), Keast (1967), and Magrab and Blomquist (1971).
Comprehensive review articles in this area are due to Hillier (1960), Worely (1962), among
others.
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11.2. Elastic vs. Inelastic Waves

The propagation of stress waves in solids can be divided into two categories, “elastic” and
“inelastic” waves. When loading conditions result in stresses below the yield point, solids
behave elastically and obey Hook's Laws, and consequently stress waves are “elastic”. As the
intensity of applied loading is increased, the response of the material is driven out of the
elastic range to a possible inelastic behavior. The behavior here may involve large
deformation, internal heat generation, and often failure of the solid through a variety of
mechanisms. In this context, “plastic” waves, for instance, can be propagated in a material,
such as a metal, which exhibits the phenomenon of yielding, when stressed beyond its
proportional limit. The theory of the propagation of such waves was first considered by
Donnell (1930). The theory, as originally conceived, was based on a non-linear stress-strain
relationship which was independent of the rate of loading. Subsequent experimental studies
have shown that the time-rate dependence of the stress-strain relation has a considerable
influence on the nature of wave propagation. Although Malvern (1969) has made an
important first step in this direction, a theoretical approach which takes such time dependence
into account leads to rather involved mathematical analysis. The subject of plastic wave
propagation is dealt with in Chapter 12.

The mechanical properties of viscoelastic solids, such as plastics and rubber, have been
studied extensively during recent years, and the subject of rheology is, to a large extent,
devoted to the description of such viscoelastic behavior. An important development of these
studies has been a consideration of the propagation of stress waves through such materials.
The problems involved here are of particular interest, in that one is here dealing with media
which are “dispersive” with respect to both velocity and attenuation. The study of the
propagation, reflection and refraction of stress waves under these conditions leads to a
number of problems which are not only of mathematical and physical interest, but also of
practical importance in their bearing on the use of high polymers as vibration and shock
absorbers, and the response of complete viscoelastic structures to rapid mechanical loading.

The third type of inelastic waves which have been studied are termed “shock waves”. This
class of waves arises, when an instantaneous, very large load is applied to the solid medium
and lateral movement is restrained. Such conditions are normally encountered in "explosive"
loading, or during the impact of high speed projectiles. Such shock waves may arise due to
the fact that the effective bulk modulus of the material increases with increasing pressure.
The importance of these shock waves lies, on the theoretical side, in obtaining the equation
of state of solids at pressures which may not otherwise achieved , and, on the practical side,
in military and mining applications.

In the case of metals, for instance, as the intensity of the applied load increases, the material
is driven beyond its elastic limit and becomes plastic. In this state, Two waves propagate in
the solid: an elastic wave (or precursor) followed by a much slower but more intense plastic
wave, Ifthe characteristics of the medium are such that the velocity of propagation of large
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disturbances is greater than the propagation velocity of smaller ones, the stress pulse develops
a steeper and steeper front on passing through the medium, and the thickness of this front is
ultimately determined by the constitution of the medium. The shock wave (or steep pressure
pulse) thus formed differs from the high pressures generated by conventional methods in that
it relies on the inertial response of material to the developed wave accelerations rather than
on the structural constraints.

There are variety of applications of wave phenomena is engineering. First is the area of
structures where the response of the structures to impact or blast loads are of significant
importance. Although under transient loads of moderate strength completely elastic
conditions may prevail throughout the structure and elastic wave theory may very well predict
the response, the behavior of structures under high intensity loads, severe enough to cause
permanent damage, would require the application of inelastic wave theories.

Another domain in the study of materials and structures involving wave phenomena is that
of crack propagation or the interaction of dynamic stress fields with existing cracks, voids or
inclusions in a material. Problems in this area are analogous to those pertaining to scattering
and diffraction problems arising in acoustic and electromagnetic fields.

The field of ultrasonics represents another major area of application of wave phenomena.
The general aspects of this area involve introducing a very low energy-level, high-frequency
stress pulse of ‘wave packe?’ into a material and observing the subsequent propagation and
reflection of this energy. In the majority of applications in this field, the means for introducing
and detecting the stress waves are based on the piezoelectric effect in certain crystals and
ceramics, whereby an electrical field applied to the material causes a mechanical strain or the
inverse effect where a strain produces an electric field. Thus an electrical pulse is capable of
launching a mechanical pulse. Detection is accomplished when a mechanical pulse strikes a
piezoelectric crystal and generates an electrical signal. Many applications in ultrasonics are
based on this reciprocal effect. For example, by studying propagation, reflection, and
attenuation of ultrasonic pulses, it is possible to determine many fundamental properties of
materials such as elastic constants and damping characteristics. The field of non-destructive
testing makes wide use of ultrasonics to detect defects in materials. Meanwhile, the
phenomenon of acoustic emission is a producer of stress waves and therefore of potential
application.

11.3. Elastic Wave Propagation

In considering wave propagation in three dimensions we can, at a certain instant of time, draw
a surface through all points undergoing an identical disturbance. As time goes on, such a
surface, which is called a “wavefront”, moves along showing how the disturbance
propagates. The wavefront is a moving surface which separates the disturbed from the
undisturbed part of the body. Consequently, particles of the medium that are located ahead
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of the wavefront are assumed to have experienced no motion, meantime, particles that are
located behind the front are visualized to have experienced motion and may continue to
vibrate for some time. In this context, a wavefront is considered to be associated with the
outward propagating disturbance. The direction of propagation is always at tight angles to
the wavefront. The field quantities and/or their derivatives are discontinuous at the
wavefront.

The normals defining the direction of wave propagation are called “rays”. For an h isotropic
medium, the rays are straight lines. If the wave propagation is limited to a single direction,
the disturbance at a given instant will be the same at all points in a plane perpendicular to the
direction of wave propagation. This situation is referred to as “plane wave”. Other cases are
“spherical waves” and “cplindrical waves”, whereby the wave fronts are spherical and
cylindrical surfaces, respectively.

Among the most important aspects of wave motion are the reflection and transmission of
waves. When a wave encounters a boundary separating two media with different properties,
part of the disturbance is reflected and part is transmitted into the second medium. If a body
has finite cross-sectional dimensions, waves may bounce back and forth between the bounding
surfaces. Although it is difficult to trace the actual occurring reflections, it can be noted that
the general direction of energy transmission is in a direction parallel to the bounding surfaces.
In such case, it is conventionally said that the waves are propagating in a “waveguide”. The
analysis of harmonic waves in waveguides leads to the notions of “nodes” of wave
propagation, “frequency spectrum”, “dispersion”, and “group velocity™.

When a pulse propagating through an elastic medium encounters an irregularity such as a void
or an inclusion, the pulse is diffracted. As the wave strikes a crack, for instance, a stress
singularity is generated at the crack tip which may give rise to the propagation of the crack
and, thus, to the fracture of the body. The reader is referred, in this context, to Achenbach
(1973), Gaff (1975), and Miklowitz (1978), among others.

The challenge in most of these problems stems from the complicated wave reflection,
refraction and diffraction processes that occur at a boundary or interface in the continuum.
This complexity evidences itself in the partial mode conversion of an elastic wave upon
reflection from a traction-free or rigid boundary which converts, for example, compression
into compression and shear. When there is a neighboring parallel boundary (forming then a
waveguide), the so-created waves undergo multiple reflections between the two boundaries.
This leads to dispersion, a further complicating geometric effect, which is characterized by
the presence of a characteristic length (like the thickness of a plate). In the case of time-
harmonic waves, dispersion leads to a frequency or phase velocity dependence on
wavelength, and is responsible for the change in shape of a pulse as it travels along a
waveguide.

If we begin the analysis of wave propagation by considering the real case of finite or bounded
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solids, more likely we overlook the main concepts of the wave propagation. Therefore, we
begin with an idealized, simplified case of having disturbance in an infinite elastic solid. Such
a disturbance is necessarily simpler, because it is free of boundary effects such as reflection,
refraction, diffraction and dispersion. Hence, the waves comprising this disturbance are
referred to as “body waves” to distinguish them from “surface” or “interface waves”
generated at, and propagating along a boundary. It is clear, however, since the displacement
equations of motion underlie all elastodynamic problems, body waves play a role in all
solutions. In an unbounded or infinite solid, which is idealized as an isotropic, elastic
continuum, only two types of body waves can propagate. This is dealt with in the following
subsection.

11.3.1. WAVE PROPAGATION IN UNBOUNDED ELASTIC SOLIDS

Anunbounded solid is considered to extend indefinitely in the three dimensions of space so
that the complications which might arise from reflections of waves at the boundaries of the
medium might be disregarded.

The equations of motion of a continuum have been derived in Chapter 2, Section 2.4.3.
These equations, (2.22), were presented in terms of the stress components acting on a small
parallelepiped of the continuum without the inclusion of the response behaviour of the
medium. However, in order to employ these equations in the study of wave propagation, one
may substitute the stress components by the corresponding components of strain through the
use of the constitutive relationships of the particular medium under consideration.

Following our presentation in Chapter 6, the stress-strain relations, for an isotropic elastic
solid, can be expressed in component form as

L = A+ 2pg,, 0,, = AA + 2pe

3 = HEy, Oy = HEyy, Oy = UE,

g, = AA + 2pe

22>

(11.1)

In the above relations, A= €, =€, + €,, + €,,, is the “dilatation” which represents the
change in volume of unit cube of the solid and A, i are the Lamé's elastic constants. In the
theory of elasticity, four elastic (material) constants, not independent, are usually used. These
are Young's modulus E, Poisson's ratio v, Bulk modulus K and the rigidity (shear)
modulus which is the Lame's constant p. From the definitions of these constants and using
equations (11.1) the following relations between the constants, in the case of an isotropic
elastic solid, can be determined as

A+p 2(A +p)’

E=-HBCA20) o A g (11.2)

Substituting from the constitutive relations (11.1) for the stress components in the equations
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of motion (2.22), the equation of motion for an isotropic elastic solid, in the absence of body
forces, can be written in the x,-direction in terms of the strain as
oy, 0 d 0
—— = —(AA + 2pe, ) + —(ug,,) + —(ue 3
p 3 o, ( B 11) ax, (P n) o, (“ 13) (11.3)

where u, is the displacement component in the x,-direction.
Replacing the strain components in (11.3) by the corresponding displacement components

2

a ul - aA 2
P ol (A+p) a + uVy, (11.4a)

from equation (3.21), Chapter 3, it follows that

VZ - az N 82 . az
ox?  Ox,2  ox,?

where V? is the Laplace operator defined by

Similar relations to (11.4a) can be established for the other two components of the
displacement vector, namely,

du, 3A )
o7 T (A +p) x, A (11.4b)
and
%y dA
—_ = A+ 22+ wV
P A rp) ==+ uVy, (11.4¢)

Equations (11.4) above are the equations of motion, in term of the displacement, for an
isotropic elastic solid in the absence of body forces. These equations may be expressed
conveniently in a vector form as

N (Arp) VWup V2
P o T Arw) VWurn Vi (11.5)
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which is the form of the well-known “Navier's equation of motion”. The latter is
conventionally adopted as the governing equation for the motion of an isotropic, elastic
solid. Equation (11.5) corresponds to the propagation of two types of waves through an
unbounded isotropic, elastic solid; namely, "dilatational" and "rotational" waves.

Differentiating (11.4a) with respect to x,, (11.4b) with respect to x, and (11.4c) with
respect to x; and adding the resulting expressions, one obtains the following "wave
equation" for an unbounded isotropic, elastic medium.

A
p el = (A+2p)V2A (11.6)

The above wave equation indicates that the dilatation A propagates through the medium
with a velocity of magnitude [(A+2p)/p]*. Denoting the latter by c,, then, ¢, = [A+2p)/p]*

In view of equations (11.2), the magnitude of the dilatational wave velocity ¢, may be
expressed further by

1/

(11.7)

= [+ 17 _ E(1-v) |* _ | K+4p/3
1 = [ +2u)p] [p(l+v)(1_2v) [ 5

It is noticed from (11.7) that the velocity c,, of a dilatational wave, is dependent only on
the elastic constants of the isotropic elastic material as well as its density. In an operational
form, the wave equation (11.6) can be written as

T?A =0 (11.8)

where I\’ is a “dilatational wave operator” expressed (see, e.g., Chou,1968) by

1 &

v - —
cl2 ot?

Iy = (11.9)

and A =V - u = dilatation

A "dilatational" wave, corresponding to the wave equation (11.8), is also referred to as
“irrotational”, since the propagation of such a wave involves no rotation of an elemental
volume of the solid. A “dilatational” wave is also known as ""bulk wave" or "primary(P)
wave"'.

On the other hand, if we eliminate the dilatation A between (11.4b) and (11.4c), that is by
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differentiating (11.4b) with respect to x, and (11.4c) with respect to x, and subtract, it
follows that '

o T ) G 3w
a2l ox, Ox, ox,  0x,

This equation can be written as
%0, -
Srohiie

where w, is the rotation about the x,-axis (see Chapter 3). Similar relations can be obtained
for w, and w, (the rotations about the x,- and x,-axis, respectively).
Thus, in generalized notation, one can write

o0 L - uvie (11.10)

where w =V x w/2 is the rotation vector.

It follows from (11.10) that the rotational wave propagates in an isotropic, elastic solid with
a velocity magnitude (u/p)”“. We denote the magnitude of the rotational wave velocity by
c,, then,

172

c, = (u/p) (11.11)

It is noticed, from the above expression, that the rotational wave velocity c, is, similar to
the dilatational velocity c, dependent only on the elastic constants as well as the density of
the material.

With reference to expressions (11.7) and (11.11), it is evident, in the case of an isotropic
elastic solid, the two velocities of body waves are independent of the frequency. In other
words, there is no dispersion (change of form) of these waves, i.e.,_ body waves travel, in an
isotropic elastic solid without change in form.

Applying the vector curl operator to (11.5), it can be shown that the vector form of the wave
equation (11.10) can be expressed as
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[ =0 (11.12)

where T2 is a rotational wave operator of the form (e. g., Chou,1968)

r?-=

2 2 2
c,” ot

2
v - L _a__} (11.13)

and @ =V x u = rotation.

A "rotational" wave is also called "equivoluminal" wave, since there is no volume change
would occur during the wave motion. A rotational wave is also known as "distortional"
wave or "secondary (S) wave"'.

Equation (11.8), or (11.12), is a necessary, but not a sufficient, condition for the satisfaction
of the Navier's governing equation of motion (11.5). Thus, for every displacement field that
satisfies (5.5), the corresponding A and w will satisfy (11.8) and (11.12), respectively. On
the other hand, a displacement field with a dilatation satisfying (11.8), or a rotation satisfying
(11.12) would not necessarily be a solution of the Navier's governing equation (11.5).

The particle motion in a dilatational wave is longitudinal, i.e., along the direction of wave
propagation. In case of a rotational wave, the particle motion is transverse, that is
perpendicular to the direction of propagation of the wave. Experimentally, one would
generally attempt to generate one type of wave with the exclusion of the other. However, it
should be emphasized that in the propagation of dilatational waves in an unbounded solid, the
medium would not be simply subjected to pure compression, but to a combination of
compression and shear. This is supported by the physical situation and mathematically by the
appearance of both the bulk modulus and the shear modulus in the expression (11.7) of the
dilatational velocity; see, for instance, Kolsky (1963).

11.3.2. IRROTATIONAL AND ROTATIONAL DISPLACEMENT FIELDS

Consider the displacement vector field u. In dynamic elasticity, u may be decomposed into
an “irrotational field”, say uy, associated with a scalar potential ¢ and a “rotational
field”, ug, associated with a vector potential . Thus, according to Helmholtz theorem (see
Morse and Feshbach, 1953), for any displacement field, subject to mild continuity and
boundary conditions, one may find at least one set of functions ¢ and { such that

u=Vp +Vxw, V-§=0 . (11.14)
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The condition V.¢=0 is necessary to uniquely determine the three components of the
displacement vector u from the four components of (¢ and ). Substituting (11.14) into
Navier's equation (11.5) yields

cIVVPD + ciVx (V) = (Vb + Vxgp)u (11.15)

Every solution of (11.14), or (11.15), is always a solution of (11.5). Accordingly, equations
(11.14) and (11.15) are also governing equations to the induced motion in an isotropic, elastic
solid and each constitutes an exact equivalence to (11.5); see Chou (1968). A particular class
of solutions of (11.15) is

VI =0, Iy =0 (11.16)

with a particular solution

=0 IAy=0 (11.17)

This is with the understanding that the class of solutions presented by (11.16) and (11.17) is
sufficient, but not necessary, for the satisfaction of (11.5). In equation (11.17), I, and T2
are the dilatational and rotational wave operators introduced earlier by equations (11.9) and
(11.13), respectively.

An Irrotational Field
A displacement field, v, is referred to as "irrotational" if

Vxu =0, u=up, (11.18)

For an irrotational wave, one has, following Eqn. (11.5),

IZug =0 (11.19)
or, alternatively, according to Potential theory,

ug = Vé (11.20)
where ¢ is a scalar potential function. Equation (11.20) implies that, for an irrotational

wave, the rotational vector w is equal to zero in magnitude. Following (11.17), then, for
an irrotational field
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— = Vzui

3x, (11.21)
(i=1,2,3)

A =V and

Accordingly, the scalar potential ¢ is seen to be associated with the dilatational
(irrotational) part of the disturbance.

Substituting (11.21) into (11.4), one has, for an irrotational field,

%,
p ot = (Lr2uVay,
at?

(11.22)
(i=1,2,3)
Rotational Field
A displacement field, u, is called “rotational” if
Vou =0, u-=uy (11.23)
For a rotational field, the Navier's governing equation (11.5) results in
Tou =0 (11.24)
u = Vxy (11.25)

i.e., the vector potential y is associated with the rotational part of the disturbance.

The above conditions for a rotational wave translates into that, in this case, the dilatation
A=0. Hence, the set of equations (11.4) reduces, for a rotational wave, to

2

p _._L_l_l. :pvzu.
32 ' (11.26)

(=12.3)
U=up tug (11.27)

Combining equations (11.14), (11.20) and (11.25), it follows that in an isotropic, elastic solid,
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a displacement field u is decomposed vectorially into an “irrotational field ug” and a
“rotational one ug.. Further, in view of (11.17), (11.20) and (11.25), it may be concluded that
for every displacement field that satisfies (11.5), there exists a set of functions up and u,
such that [see, equations (11.19) and (11.24)]

Ifug, =0 and Tju, =0 (11.28)

This translates, physically, into the following:

A disturbance in an isotropic, elastic solid would generate two waves, one dilatational,
involving no rotation, with velocity ¢, and the other is rotational, involving no volume
change, that propagates at velocity c, The ratio of the two speeds may be expressed, with
reference to (11.7) and (11.11), as

G 227 [20-m ]
c, p 1-2v |’

where v=Poisson's ratio. Since 0 < v < 1, it follows that ¢, > c,.

In view of (11.28), the dilatational and rotational waves are not coupled within the

continuous solid (except perhaps on the boundary where the prescribed boundary conditions
must be satisfied).

Table 11.1 summarizes the relationships given in the foregoing, in terms of displacements,
while Table 11.2 gives such relationships in terms of potentials (see, also, Chou,1968).

11.3.3. PLANE WAVES IN UNBOUNDED ELASTIC MEDIA

Plane waves are propagating disturbances in two- or three-dimensions where the motion of
every particle in planes perpendicular to the direction of propagation is the same. An example
of a propagating (three-dimensional) plane disturbance is given in Figure 11.1. As shown in
this figure, the magnitude of the propagation velocity of the plane is denoted by ¢ while the
normal to the plane is designated by n. The position of an arbitrary point P on the plane is
indicated by r.

For the plane wave illustrated in Figure 11.1, the motion of every particle along the plane is
defined by

u‘r-ct = constant (11.29)
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Figure 11.1. Plane wave motion in an unbounded elastic medium.

Consider now the plane wave

u=Af(n'r - ct) (11.30)

where A is the displacement vector of the particle along the plane of the wave and f(*)
indicates an appropriate function of the shown argument. Substituting (11.30)
in the Navier's governing equation of motion, (11.5), it can be shown that

* + P)Ajnj n + pA; = pczAi (11.31)

Relation (11.31) above represents three homogenous equations in the amplitude components
Ay, A,, A,. This leads, upon expanding the determinant of coefficients, to

(A +2p - pe?)(p - pc?)? =0 (11.32)

This equation gives the two roots
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172
¢ = [A Zp] @)
p (11.33)
c, = (Wp)? (b)

which again are, respectively, the magnitudes of the velocities of dilatational and rotational
waves.

Accordingly, plane waves may propagate, without dispersion, at one or the other velocity
(i.e., c, or c,) in the unbounded, isotropic elastic medium. Reference is made to Table 11.1
for representative values of these velocities, as calculated for various engineering materials.

11.3.4. WAVE PROPAGATION IN SEMI-INFINITE ELASTIC MEDIA

When a stress wave encounters a boundary between two media, energy is reflected and
transmitted from and across the boundary. On the other hand, if the boundary is a free
surface, reflection of the waves will be much more pronounced. It is well recognized that a
characteristic phenomenon of the elastic wave-boundary interaction in solids is that of mode
conversion. In this, an incident wave, either pressure or shear, on the boundary will be
converted into two waves on reflection. Such mode-conversion phenomenon along with the
fact that two types of waves may exist in an elastic solid, as discussed earlier, accounts for
the relative complexity of wave propagation in solids in general as compared to equivalent
problems in acoustics and electro-magnetics (e.g., Graff, 1975).

Figure 11.2. Wave motion in a semi-infinite elastic medium.
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With reference to Fig. 11.2, we consider, following Graff (1975), plane harmonic waves
propagating in the half-space x,> 0. It is assumed that the wave normal n lies in the x, x,-
plane. This plane will be referred to as the vertical plane while the x, x;-plane, the surface
of the half-space, will be referred to as the horizontal plane. Recalling the previous discussion
concerning the propagation of plane waves in infinite media, Section 11.2.2, it is recognized
that the particle motion due to dilatation will be in the direction of the wave normal and will,
thus, be in the vertical plane only. The transverse particle motion, however, is due to shear
and will have components both in the vertical plane and parallel to the horizontal plane. In
Fig. 11.2, the normal displacement component is designated by u, and the transverse
components are denoted by u, and u, which are, respectively, in the vertical and horizontal
planes. As every particle along the plane of the wave is acquiring the same motion, the
motion will be invariant with respect to x, if the wave normal is in the vertical plane. In
terms of the potentials ¢ and 1, the governing equations can be expressed as

u = 9.1’. + %
! ox, ox,
w9 9
7ok, o
_ -ay, Yy,
Uy = —— + —=
ox, ax,
.ai. + iq_ll =
ox, %,
(11.34)
2 .
V2¢ = _1_ 9_.43’ Vaqjl = l- i
c,? ot? c,? at?

where ¥;(i=1,2,3) are the components of the vector function . In deriving the above
governing equations both the postulate V . § = 0 and the x;-independence of all quantities
have been used.

Combining the displacement expressions in (11.34) with the stress-displacement constitutive
relations for the isotropic elastic solid, the stress components can be established in terms of
the potentials ¢ and Y, ie,
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ox,?  ox} ax,? 0%, 0x,
(11.35)
0. = 2% |, oy, _ oy,
1 ox,0x,  dx,?  Ox’
0 &
023:p—l|’21+__‘l_12_, ol3=0
ax2 axl ax2
with boundary conditions
0p =0y =0,3=0, x=0 (11.36)

Experimental studies on wave propagation in semi-infinite media may vary considerably in
scope. Ultrasonic excitation is often used as an impulsive surface force, meantime, photo-
elasticity has been conventionally adopted as a recording technique for the patterns of wave
motion in elastic materials. Dally, Durelli and Riley (1960), for instance, used small explosive
charges of lead azide (PbNy) to dynamically load a low-modulus urethane rubber plate and
the dynamic fringe propagation patterns were recorded by a high-speed camera (see, also,
Dally, 1968 and Graff, 1975). Dally and Riley (1967) used an embedded polariscope
technique to experimentally study the three-dimensional problem of a point load on half-space
using a photo-elastic method (see, e.g., Pindera, 1986).

11.3.5 SURFACE WAVES

As per our earlier discussion concerning elastic wave propagation in an infinite elastic
medium, only two types of waves can be propagated, i.e , dilatational (primary, P -) and
rotational (secondary, S -) waves. In the case of a semi-infinite medium, however, a third
type of wave may exist. The existence of the three types of waves in a semi-infinite medium
was first encountered in seismology where it was observed that in an earthquake there were
two early, rather minor, disturbances as a result of P- and S- waves, but the main damaging
effect was done by the third shaking. Such a disturbance was not consistent with the elastic
wave phenomenon in infinite media. This led to the realization of existence of a surface wave
in semi-infinite media. In case of an earthquake, the relative significance of P- and S- waves
is considered to be a consequence of volumetric dispersion of energy into the earth's interior,
but, the significant amount of energy corresponding to the third wave suggested that this
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wave dissipated its energy less rapidly then the P- and S- waves. This could be rationalized
by assuming it, the third wave, was basically limited to the surface. The other characteristics
of the surface wave, other then it is confined to the surface zone, is that the velocity of surface
wave is less than that of body waves, see, e. g., Kolsky (1963). We introduce below two
types of surface waves; namely, Rayleigh waves and Love waves.

(A) Rayleigh Waves

When the solid has a free surface, "Rayleigh" surface waves can also exist. These waves were
first introduced by Rayleigh (1887), see, also, Lamb (1904), who showed that their effect
decays rapidly with depth and that their velocity is less than that of body waves ¢, and c,.
It is shown by Kolsky (1963) that Rayleigh waves do, in fact, travel with a fraction & of the
velocity c, of distortional waves where £ is obtained from the equation

ES - 8E* + (24-16b2%)E? + 16b%2 - 16 = 0 (11.37)

In the above equation, b is an elastic constant of the material expressed by

b = [(1-2v)/(2-2v)]? (11.38)

where v is Poisson's ratio.

In Rayleigh waves, the particle motion is parallel to the direction of wave propagation and it
is in a plane perpendicular to the surface containing the waves during travel.

In case of an elastic solid, the velocity of a “Rayleigh” surface wave is independent of the
Jfrequency and depends, similar to the body waves, on the elastic constants of the material.
In other words, there is no dispersion (change of form) of these waves.

It was Lord Rayleigh the first to investigate this type of surface wave in which the amplitude
of the wave decays exponentially with depth, from the surface to the medium interior.
Rayleigh waves spread only in two dimensions (see, e.g., Davis, 1988). It was anticipated by
Rayleigh that waves of this type might approximate the behavior of seismic waves observed
during earthquakes. We follow, below, the model of Achenbach (1973) to determine the
displacement and velocity of Rayleigh waves.

The criterion for Rayleigh surface waves is that the displacement decays exponentially with
distance from the free surface. Thus, we consider components of the form

u =Ae "exp [ik(x, - ct)] (11.392)
u,=Be " exp [ik(x, - ct)] (11.39b)

u, =0. (11.39¢)
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The real part of b is supposed to be positive, so that the displacements decrease with
increasing x, and tend to zero as x, increases beyond bounds.

Combining Equations (11.39) with the equation of motion (11.5) yields two
homogeneous equations for the constants A and B. A non-trivial solution of this system of
equations exists if the determinant of the coefficients vanishes, which leads to the equation

[elb?-(cl-cHk?1[crb?-(cr-c?)k?]=0

(11.40)
The roots of (11.40) are

2\1 2\1
b,=k(1-°_]2, b2=k[l—-9—]2.

2 2

CL Cr

It is noted that b, and b, are real and positive if c<c;<q_, and if positive roots are considered.

The ratios (B/A) corresponding to b, and b, can now be computed as
( _B_] b ( 2] _ ik
A), ik’ (A), b

Returning to Equations (11.39), a general solution of the displacement equations of motion
may, thus, be written in the form

u =[A e ™+ A e " T exp [ik(x, - ct)] (11.41)
bl -b xy ik -byxy .
u,=|-—A/e +—Ae exp [ik(x, -ct)]. (11.42)
ik b,
2
26,4+ 2-2 k22
02 l'.“2
T
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The constants A, and A, and the phase velocity ¢ have to be chosen such that the stress
tensor components 0,, and 0,, vanish at x,=0. By substituting Equations (11.39), (11.41)
and (11.42) into the expressions for 0,, and 0,, at x, = 0, we obtain after some manipulation

For a non trivial solution the determinant of the coefficients of A, A, must vanish, which
yields the following well-known equation for the phase velocity of Rayleigh waves:

1 1
c2)? ctl3 ct)7 _
[2__2] 4l 1-2 -2 7 =0 (11.43)
Cr CL Cr

It is noted that the wave number does not enter in (11.43). Thus, surface waves at a free
surface of an elastic half-space are thus nondispersive.

Since (11.43) is an equation for ¢?, the two roots are each other’s opposite. As noted earlier,
Eq. (11.43) shows that the roots may be expected along the real axis for - ¢; < c¢ < ¢;.
Obviously, only the positive real root is of interest. The roots for ¢’ are usually computed by
rationalizing (11.43).

Denoting the phase velocity of Rayleigh waves by ¢z, Eqn.(11.43) can be considered as an
equation for cg / ¢, with Poisson's ratio v (0 < v < 0.5 ) as independent parameter.

A good approximation of cg can be written as

0.862 +1.14v
=l

R 1+v

T (11.44)

As v varies from 0 to 0.5, for most metals, the Rayleigh wave phase velocity increases
monotonically from 0.862 c; to 0.955 c;.

Given suitable generating conditions, surface waves as well as body waves are generated at
a bounding surface. For a two-dimensional geometry the surface waves are essentially one
dimensional, but the body waves are cylindrical and undergo geometrical attenuation. Thus,
at some distance from the source the disturbance due to the surface wave becomes
predominant.

Rayleigh waves have been studied in great detail and they have found several applications.
The attractive features are the absence of dispersion and the localization of the motion in the
vicinity of the surface. For further study on the subject matter, the reader is referred to
Viktorov (1967) and Graff (1975), among others.
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(B) Love Waves

The “Love” wave is a shear surface wave confined to a relatively shallow zone. Recalling our
earlier discussion, for Rayleigh waves, the material particles move in the plane of propagation.
Thus, for propagation in the x,-direction along the surface of the half-space x, > 0, the
displacement u, vanishes for classical Rayleigh waves.

The question may now be raised whether surface waves with displacements perpendicular to
the plane of propagation, the plane x,,x, , are possible in a homogeneous isotropic linearly
elastic half-space. We recall that the S-waves are governed by the equation:

d*u, . du, _1 % u, (1145,
2 2 2 2’ .
dx, 9dx, cp Ot
A solution of (11.49), representing a surface wave, is written in the form
u, = Ae " exp [ik (x, - ct)], (11.46)

where the real part of b must be positive. By substituting (11.46) into (11.45) we find

2 il
b=k{1—[-§~] ]’. (11.47)
T

For a free surface, the boundary condition at x, = 0 is

——=0. (11.48)

The boundary condition (11.48) can, however, be satisfied only if either A=0 or b=0. Neither
case represents a surface wave.

Experimental data, particularly as gathered from seismological observations, have, however,
shown that surface waves may occur along free surfaces. An analytical resolution of this
question was provided by Love, who showed that such waves are possible in the half-space
covered by a layer of a different material (e.g., Ewing et al., 1957).
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11.4. Reflection and Refraction of Waves at a Plane Interface

The presence of a discontinuity in the material properties generally produces a significant
influence on systems of wave propagating through the medium. Consider, for example, the
propagation of plane harmonic waves in an unbounded medium consisting of two joined
elastic half-spaces of different material properties. In such a composite medium, systems of
plane waves can be superposed to represent an incident wave in conjunction with reflections
and refractions at the interface between the two media. The wave which emanates from an
infinite depth in one of the media is called the incident wave. An incident wave on an
interface would result in additional reflected and refracted waves in the region. For the
special cases of an elastic half-space which adjoins a medium which does not transmit
mechanical waves, the system of waves consists of incident and reflected waves only. In
general, all media transmit waves, but, for practical purposes, refraction of elastic waves at
an interface of a solid elastic body with air may be neglected. In this case, a reflection of plane
waves only at the free surface may be considered.

Basically, as mentioned earlier, two types of body elastic waves may be propagated through
a solid medium; namely P- ans S-types of waves.. It is found that, when a wave of either type
impinges on a boundary between two media, both reflection and refraction take place. In this
section, we study the reflection of both the dilatational and distortional waves at free
boundary and also reflection and refraction of these two waves at an interface between two
media, whereby each case is reviewed separately. For further studies on this context, the
reader is referred to Ewing et al. (1957), Kolsky (1963), Kinslow (1970), Achenbach (1973),
Tolstoy (1973), Eringen and Suhubi (1975), Graff (1975), Miklowitz (1978), Miklowitz,
and Achenbach (1977), Davis (1988) and McCarthy and Hayes (1989).

11.4.1. DILATATIONAL WAVES AT A FREE BOUNDARY

By Free Boundary we mean a surface in vacuum when there can be no refracted waves. Fig.
11.3 shows the reflection of a dilatational wave at a free surface. In this figure, a, is the angle
of an incident dilatational wave (of an amplitude A,). Meantime, o, is the angle of the
reflected dilatational wave (with an amplitude A,). Let A;,,, B, represent the amplitude and the
angle of the reflected distortional wave. As shown in Fig. 11.3, the direction of propagation
of the incident dilatational wave is in the x, x, plane making the angle of incidence &, with the
X;- axis, whilst, the free boundary is the x, x, plane. The following relations between the
various angles of incidence and associated with wave velocities may be written (see, e.g.,
Kolsky, 1963),

sine;,  sina, sinf,
= = (11.49)

C CL Cr

Thus,
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sine, ¢,

o, =a, and — = =,

sinff, ¢,
2(A -A))cosa,sinf, - A cos 2p,=0. (11.50)
(A, +A;)cos2 P, sina, - A, sinf,sin2p,=0. (11.51)

Thus, when a dilatational wave is incident on a free surface with an angle a, two waves are
generated on reflection: one is a dilatational wave reflected at an angle equal to the angle of
incidence a, while the other is a distortional wave reflected at a smaller angle 8 where sin
B/sin o = c/c,.

X, Distortional wave
(reflected)
Dilatational wave 2
(incident)
&,
o,
Dilatational wave
(reflected)
Free surface X,

X,

Figure 11.3. Reflection of a dilatational wave at a free surface. The face
boundary is the X, -X, plane.

11.4.2 DISTORTIONAL WAVES AT A FREE BOUNDARY

In a similar analogy to the above presentation, if a distortional wave is incident on a free
surface at an angle v, Figure 11.4, both distortional and dilatational waves are generally
reflected. The distortional wave is reflected at the same angle y while the dilatational wave
is reflected at a generally smaller angle & where sin y/sin & = ¢;/c,.
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X, Dilatational wave
(reflected)
Dilatational wave
(incident)
Y
Distortional wave
(reflected)
Free surface X,

X,
Figure 11.4. Reflection of a distortional wave at a free boundary.

11.5. Wave Propagation in Bounded Elastic Solids

In this section, the propagation of stress waves along a cylindrical bar will be considered first,
as this is a problem which has been investigated most fully theoretically and on which there
are also some experimental data. Before examining the problem in terms of the exact elastic
equations, we shall consider the simple treatment which applies to the propagation of waves
the lengths of which are large compared with the diameter of the bar.

There are three different types of vibration which occur in thin rods or bars; these are
classified as “longitudinal”, “torsional”, and “lateral”.

In longitudinal vibrations, elements of the rod extend and contract, but there is no lateral
displacement of the axis of the rod. In torsional vibrations, each transverse section of the rod
remains in its own plane and rotates about its center, with the axis of the rod remaining
undisturbed. Meanwhile, lateral vibrations correspond to the flexure of portions of the rod,
with elements of the central axis moving laterally during the motion.

In this section the subject of stress wave propagation in bars is first discussed. Then, the
approximate theory of stress wave propagation in plates is briefly reviewed. For further
information on the subject matter, the reader is referred to Kolsky (1963), Graff (1975),
Miklowitz (1978) and McCarthy and Hayes (1989).

11.5.1. STRESS WAVES IN RODS

In all cases of longitudinal, torsional and lateral (flexural) stress waves in bars the approximate
description of wave motion has been used by following an approximate solution such as the
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one developed by Achenbach (1973). In this case, one can find the velocities of different type
of waves in a long rod. The exact treatment of harmonic wave motions in an elastic circular
cylinder is already rather complicated. For a cylinder with other than circular or an elliptical
cross section, however, it becomes rather impossible to carry out an exact solution. Even for
a strip of rectangular cross section whose lateral surfaces are free of traction it is not possible
to analyze general harmonic wave motions rigorously within the context of the linear theory
of elasticity (Davis 1988). For this reason, simplified analytical models have been proposed
that provide an approximate description of wave motions in rods of rather arbitrary cross
section. In this section, we review some models that are commonly used. These models are
based on a priori assumptions with regard to the deformation of the cross-sectional area of
the rod, which simplify the description of the kinematics to such an extent that the wave
motion can be described by one-dimensional approximate theories. Further, for propagation
of time-harmonic waves, it was found that the approximate theories can adequately account
for the dispersive behavior of the lowest axisymmetric and flexural models over a limited but
significant range of wave-numbers and frequencies.

The governing equations can be obtained either by using variational methods or by
straightforward momentum considerations of an element of the rod. The latter approach ,
however, has the advantage that the physical concepts are conveyed more clearly. For the
more complicated theories it is, however, easier to employ the assumed displacement
distributions to compute the corresponding kinetic and strain energies for an element of the
rod, whereupon Hamilton's principle can be applied to obtain the governing equations. In the
following analysis, we present a brief derivation of the equations for the Timoshenko model,
and we state only the governing equations for some other models. In all cases, the
assumption that the wavelength is long compared to the lateral dimensions of the rod would
prevail.

11.5.2. LONGITUDINAL WAVES IN RODS
Longitudinal stress waves are also called extensional waves. In an extensional wave motion,
the dominant component of the displacement is in the longitudinal direction. Based on the

assumption that the cross-sectional area of the rod remains plane, it can be shown that
consideration of the forces acting on an element leads to the equation

— = = (11.52)
b

where,
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Cy, =

1 E (11.53)
5 .

Eq. (11.52) predicts that extensional harmonic waves in the rod are not dispersive.
11.5.3. TORSIONAL STRESS WAVES IN RODS

In the approximate theory, it is assumed that transverse sections remain plane and that the
motion consists of a rotation of the sections about the axis. This leads to a wave equation for
the angle of rotation with a propagation velocity.

1
C 21
(EX] K (11.54)

In the above equation, K is the radius of gyration of a cross section of the rod about its axis,
A is the cross-sectional area and C is the torsional rigidity of the rod.

11.5.4. FLEXURAL STRESS WAVES IN RODS

In the approximate theory of flexural motion of rods of an arbitrary but uniform cross section
with a plane of symmetry, it is assumed that the dominant displacement component is parallel
to the plane of symmetry. It is also assumed that the deflections are small and that cross-
sectional areas remain plane and normal to the neutral axis. For a beam, free of lateral
loading, the equation of motion is

’w . EI d'w -0
v PR ax (11.59

where w is the deflection, I is the moment of inertia of the cross-sectional area A about the
neutral axis. Substituting a harmonic wave, the phase velocity is expressed as

1 1
| El2[ L}z
c (p) [A) k. (11.56)

Thus, the phase velocity is proportional to the wave number, which suggests that (11.56)
cannot be correct for large wave numbers (short waves). For a circular cylindrical rod, Eqn.
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(11.56) reduces to

1
c=—l—(—E—') 2 ka. (11.57)
2\p
which results in the following frequency
1
w=l(-§)2k2a. (11.58)
2\p

11.5.5. STRESS WAVES IN A LONG BAR

In this section, elastic stress wave motion in a long bar is considered in view of the work of
Zukas et al. (1982).

In the previous sections, we learned that when a material is stressed with a suddenly applied
load, the deformations and stresses are not transmitted immediately to all parts of the body.
Thus, remote portions may remain undisturbed for some time. Deformations and stresses
progress through the material in a form of one or more stress disturbances which travel, in
a perfectly elastic material, at a finite velocity form the area of application of the load, this
velocity being a characteristic of the material. Such a suddenly applied, or impulsive, load
may be produced by a sharp mechanical blow, a detonating explosive, or by impact of a high
velocity projectile. Regardless of the method of application, the consequent stress
disturbances have identical properties.

In the elementary case, we consider two types of stress pulses generated by an impulsive load.
The first, the longitudinal wave, is also called a dilatational, irrational, or primary (P) wave,
the terms being synonymous. In a longitudinal pulse, the particle motion is parallel to the
distortional, rotational, secondary (S), or shear wave, the particle motion is normal to the
direction of propagation of the pulse and the strain is a shearing strain.

direction of propagation of the pulse and the strain is pure dilatation. In a transverse wave,
otherwise called a

Two velocities must be considered: the velocity of propagation c of the disturbance and the
particle velocity v.

Particle velocity is defined as the velocity with which a point in the material moves as the
disturbance displaces across it. Both the velocity of propagation c of the disturbance and the
particle velocity v enter into the governing equations in distinctly different ways as dealt with
in the following section.
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11.5.6. GOVERNING WAVE EQUATIONS

The relationship between the longitudinal stress at a point in a body and the longitudinal
particle velocity v; at the point is expressed, in view Newton's second law, as

F dt=(mv,) (11.59)

Here, F, is the longitudinal force acting on a given cross section, dt is the time the force acts,
m is the mass it acts against, and v; is the velocity imparted to m by F;. Since

- FL
° % (11.60)
m=pAdl

where dl is the distance the pulse has moved in time dt, equation (11.78) can be written as

cadt=pAdlduy (11.61)

or g=p—dv
TR

but dl/ dt is just the speed of the pulse ¢c;, so that
o=pc, (Av) (11.62)

In a similar manner it can be shown for the transverse pulse that

t=pcr(Avg) (11.63)

where T is the shear stress, c; is the velocity of propagation of the transverse disturbance,
and A v, is the change in particle velocity due to shear.

11.5.7. REFLECTION OF WAVES
Any elastic wave will be reflected when it reaches a free surface of the material in which it is

traveling. The simplest case occurs when the wave strikes the surface normally. In the case
of alongitudinal wave, since the stress normal to the surface, at the surface, must be zero,
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the reflected pulse must be opposite in sense to the incident pulse (a compression wave would
be reflected as tension and vice versa). To illustrate the situation, one considers the
displacement due to the incident pulse to be u,=f (x, - ct) moving in the positive x, direction.
After impingement on a free surface, a reflected wave moves in the negative x, direction. Let
the displacement for the reflected wave be of the form u, = g (x, + ct). At the free boundary,
the net stress must be zero.

Since the stress is given by

Ongr =0; 0 =0 at x, =1 (11.64)

or

0=Ee=E(@Qu,/dx,)

ONET=E[f'(l‘Ct)+g'(l+ct)]=0 (11.65)

Hence, the shape of the reflected pulse is the same as the shape of the incident pulse, but it
is opposite in sign.

f'(0-ct)=-g (I1+ct)

The net particle velocity may be, also, found by superposition. Thus,

du,; OJup,
= + =
UNET TV T %R T T oy (11.66)
=c(-f'+g’) at x =1l (11.67)
=2cg’

Hence, the particle velocity and also the displacement in a region where the incident and
reflected pulses overlap are twice that for either pulse, At a fixed boundary, we require the
displacement and particle velocity to vanish. Thus,

Uypr=-cf (1-ct) +eg (1 +ct)
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or
f'l-ct)y=g (1+ct) (11.68)
The net stress is doubled at a fixed boundary, whilst the net displacement and particle velocity

are zero.

o <E| 2% R| Err (1-ctyrg 0 on)]
NET ox ox

(11.69)
=2Ef (1-ct)

11.5.8. STRESS WAVES IN BARS OF DISCONTINUOUS CROSS SECTIONS

Following Zurkas et al. (1982), we consider a bar with a change in cross section, as illustrated
in Figure 11.5 Assume that a disturbance at the left end of the bar has caused an elastic
compressive pulse, with an intensity a, to propagate to the right. At the interface with the
second portion of the bar, with different section, the wave will be partly transmitted and
partly reflected. Let the transmitted wave amplitude be oy, and the reflected wave amplitude
be 0. Two conditions must be satisfied at the interface:

1. The forces at the interface, in both portions of the bar.
2. Particle velocities at the interface must be continuous.

Taking oy and o; to be compressive, condition 1 above gives

A (0, +0p) = A, 0; (11.70)

where A,, A,, are the respective cross-sectional areas. Condition 2 above gives

U ~ Vg = Ug (11.71)

or, using 6 = pcv

9, Ox Op
= 11.72
Pi¢r P16 PG ( )

Solving for o, and o; in terms of o;, gives
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2A p,cC
o, = 1o 11.73
T Apc A ¢ : ( )

. = APy Cy ~ AP €
©OARC A

o, (11.74)

o = 2O 11.75
T (Al+A2) (1‘ )

Consider several implications of the above expressions:

1. If the materials in both bars are identical then p, = p, and ¢, = ¢, . Then,
If A,> A, then o; and oy will be of the same type. If A, <A, , then, o; and o, will
be of opposite sign.

2. If A,/ A, - 0, the rod is effectively free and o - -0;. If A,/ A, - =, the rod is fixed
and by ~ b, b; -~ 0.

3. For no wave reflection to occur from the discontinuity in the bar,
0,=0:A,p,c,=A,p,c, and 0 =0, \/Ez p,/E p, (11.76)
4. In (11.76), the coefficient of o, is positive. This means that tension will be

transmitted as tension and compression as compression. For a situation wherein
p, ¢, » P, €,, or medium 2 is much more rigid than medium 1, Figure 11.5, the stress
of the transmitted pulse is approximately twice the stress of the incident wave.

5. In (11.76), the coefficient of o, can be positive or negative depending on if
P, €, <p,c,. Ifthe coefficient is negative, an incident compression-stress is reflected
as a tensile stress and vice versa. If the coefficient is positive, the incident
compressive stress is reflected as a compressive stress. These results are in complete
agreement with the laws of conservation of momentum and kinetic energy.
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A, Py, C =< A, pycC
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o, U, 0 Uy 0nUp »re

Figure 11.5. Wave reflection and transmission at changes in cross section.
11.5.9. STRESS WAVES IN PLATES

In this section, we briefly review the elastic stress wave propagation phenomena in plates. The
reader is referred, in this context, to the work of Rayleigh (1887), Lamb (1917), Graff (1975),
Miklowitz and Achenbach (1977), and McCarthy and Hayes (1989).

Similar to the case of elastic wave propagation in rods, we have three different types of waves
propagating in a plate, i.e., “longitudinal”, “torsional” and “ flexural” waves. When we
deal with a semi-infinite plate, the wavelength is long compared with the thickness of the
plates, and the longitudinal wave velocity C, is expressed by

E
p(1-v?)

1
2

1
CL=[4“(M“) ]2 = (11.77)

(A+2p)p

The increasing attention to the dynamic behavior of materials and evermore increasing of
application of ultrasonics are two very important reasons behind the significance of the wave
propagation phenomenon, but, there are, also, a number of other reasons:

First, experimental methods for the generation and detection of high frequency mechanical
waves have become available only with the advent of electronic techniques and of high speed
photographic recording apparatus. Secondly, the appearance of new materials, such as
plastics and polymeric material systems in general, the mechanical properties of which depend
very markedly on the time-rate of loading, has led to studies of the mechanical response of
such materials to high frequency mechanical waves, with a view to correlating their
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microscopic structure with their mechanical behavior. Second, engineers have become more
and more concerned with the response of conventional engineering materials, such as metals,
to large impulsive forces applied for very short periods of time. This interest arises both in
military developments and in problems of impact and of shock absorption in engineering
structures. A proper understanding of all these problems requires a knowledge of the nature
of stress wave propagation in engineering materials.

A number of distinct types of wave propagation in elastic solids have been investigated and,
although the phenomena observed in practical situations do not always conform to the
idealized mathematical models, the theoretical work has received experimental confirmation
in a number of the problems, and the experiments have, in turn, shown effects which have led
to further theoretical advances Kolsky (1963). That gives us enough justification for the
idealization and assumptions made in the analysis pertaining of wave propagation phenomena.
The assumptions of being continuous, isotropic, homogenous and perfectly linear elastic
material are never true for media, but in order to prevent very complicated problems that do
not have an easy mathematical solution we make those idealizations.

The physical explanation of the propagation of a wave lies in the interaction of the discrete
atoms of a material. But two properties of a medium, i. e., deforrnability and inertia, are
essential for the transmission of a mechanical disturbance. All real materials are deformable
and possess mass and consequently all real material transmit mechanical waves. The inertia
of a medium first offers resistance to motion, but once the medium is in motion inertia, in
conjunction with the resilience of the medium tends, to sustain the motion, 1f, after a certain
interval the externally applied excitation becomes stationary, the motion of the medium will
eventually subside due to frictional losses and a state of deformation will be reached. The
importance of dynamic effects depends on the relative magnitudes of two characteristic times:
the time characterizing the external application of the disturbance and the characteristic time
of transmission of the disturbance across the body. In other words, for low intensity
excitations, both the geometry of the entire structure as well as the nature of the material from
which it is made play a major role in resisting external forces. As loading intensity increases,
the response tends to become highly localized and is more affected by the constitution of the
material in the vicinity of load application than the geometry of the total structure. A
description of the phenomena in terms of elastic, inelastic, and shock wave propagation
becomes appropriate.

Thus, we have to know, indeed, when we can analyze the behavior of a material simply by
using strength of material and dynamic theories and under which circumstances we have to
use wave propagation phenomena to analyze the behavior of materials. We know that in fact
every process of loading is a dynamic case involving wave propagation phenomena. After
every loading, disturbances are produced at the place where loading is applied and then
propagate toward other areas in the medium. Then, propagation and reflection of waves in
the medium continue until the medium reaches the state of static equilibrium. If the rate of
applying the load is small compared with the velocity of wave propagation, static equilibrium
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prevails. On the other hand, if loading is applied at a rate that is fast enough if compared with
the wave propagation velocity, then, we have to consider using wave propagation analysis in
determining the response of the medium. At this stage we could clarify the point with an
example; suppose we have a medium subjected to an external load F(t) applied at point P. We
wish to determine the deformation and the distribution of stresses throughout the medium.

We know that we have different types of waves propagating inside the media such as
dilatational and distortional waves but we also know that the highest velocity is that of the
dilatational wave C,. Thus, if the external disturbance is applied at time t=0, the disturbed
regions at times t, and t, are surrounded by spheres centered at point P with radii ¢, t, and
c, t, respectively. Therefore, the entire body is disturbed at time, r =r /¢, , where r is the
largest distance within the body , measured from point P. Let us assume that over a time t,
, the loading F(t) has drastically changed. In this case, the dynamic effect are important if t,
and the r/c,, are of the same order of magnitude. If t,»r/c the problem is quasi-static
rather than dynamic in nature and inertia effects can be neglected. Thus, for bodies of small
dimensions, a wave propagation analysis is called for if t, is small. If the excitation source is
removed, the body returns to rest after a certain time. For excitation sources that are applied
and removed, the effects of wave motion are important if the time interval of application is
of the same order of magnitude as the characteristic time of transmission of a disturbance
across the body. For bodies of finite dimensions, this is the case for loads of explosive origins
or for impact loads. For sustained external disturbances, the effects of wave motions need
be considered if the externally applied forces are rapidly changing with time.

A very important parameter in wave propagation, is the relative velocity of different wave
types. The velocity of a dilatational wave has the largest magnitude, meantime, the
magnitude of a Rayleigh wave is less than that of a distortional wave. The significant point
is that all of these wave velocities are functions solely of the elastic constant of the medium,
and, thus, they are characteristics of the mechanical behavior of the medium.

11.6. Study Problems

1. What is meant by an “inelastic wave” ? Describe briefly why it is different from an
“elastic wave”.

2. Describe briefly the following terms:
Waveguide, node, frequency spectrum, dispersion, and group velocity

3. Derive, in a vectorial form, the expression for the “equation of motion”, in terms of
the displacement, for an isotropic elastic material.

4. Based on Problem 3 above, derive the “wave equation” for an unbounded isotropic,
elastic medium.
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5. Derive the governing equation of motion for a homogeneous rod with an elastic
modulus E and a constant density p.

6. Solve problem #5 above for an inhomogeneous rod with the elastic modulus varies
as E = E, (I+x) and a constant density p.

7. Based on Problem 4 above, derive the expressions, in terms of the material elastic
parameters, for both the “dilatational” and “rotational’ wave-velocities. Explain
briefly the difference in physical significance of the two velocities.

8. Based on Problem 7 above, search the values of the material parameters and
determine the magnitudes, of both wave velocities for the following materials:
Aluminum, copper, lead, magnesium, nickel, silver, -tin, tungsten and zinc. Use SI
units, and present your results in a an appropriate table format.

9. What is meant by “rofational’ and “irrotational’ fields ? Use appropriate
mathematical derivations to illustrate your explanation.

10.  Explain briefly the difference in physical significance of a “dispersive wave” vs.
“nondispersive wave”.

11.  (a) What is meant by a “surface wave” 7 . : :
(b) Comment briefly on the validity of the following expression: “Surface waves at a
free surface of an elastic half-space are nondispersive”.

12.  Explain briefly the difference in physical significance between “Love” and “ Rayleigh”
surface waves, then, Comment on the validity of the expression: “Love waves are
dispersive, as opposed to Rayleigh waves which are not dispersive”.

11.7. Problems

The following problems may require some literature search by the student for information
not directly available within the material presented in the context of this Chapter.

13.  Comment, with an analytical proof, on the following statement: “The Love waves are
dispersive, as opposed to Rayleigh waves which are not dispersive”.

14. Comment, with an analytical proof, on the following statement: “An elastic wave
reflected from a fixed-end bar is entirely unchanged in shape or intensity”.

15.  Determine the resulting wave propagation in rod of length /, which is fixed at one end.
The rod is subjected to a compressive load P; which is then suddenly removed. Plot
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the displacement versus time for the end of the rod. Assume the material of the rod
to be linear elastic.

16.  Derive the governing equations and boundary conditions for a plate, as based on
energy considerations.

17.  Derive the frequency equation for the natural frequencies of a clamped, circular plate.

18.  Determine the expression for the dilatation in the case of a plane harmonic dilatational
wave propagating in an infinite medium.

19.  Derive the frequency equation for pure torsional wave in a composite rod. The latter
is composed of an inner cylinder of radius, which is attached to an outer shell of an
inner radius a and outer radius 5. Assume that the shear wave velocity in the inner
cylinder to be greater than that in the shell.

20. A semi-infinite plate has traction-free lateral surfaces on x=+ g and a stress-free edge
at y=b. Investigate the reflection of an incident longitudinal plane wave from the
boundary. Also, determine the ratios of the pertaining reflection coefficients for the
various wave components.
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TABLE 11.1. Wave propagation in an isotropic, elastic (unbounded) solid. Pertaining relations in terms of
displacement.

Displacement field wu,
General governing equation:

2
Navier’s pou_ uViu +(A+u)VV-u
at?
Two propagating waves:

Dilatational (Irrotational); (ug, c,)
Rotational (Distortional); (ug, c,)

Necessary and sufficient relations for the satisfaction of Navier's governing equation (above):
u=ug +ug

Necessary but not sufficient relations for the satisfaction of Navier's governing equation:

Dilatation A:

, 1 &

a=v uvi-— —[a=0
c,? at?
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Rotation w:

Sufficient but not necessary relations for the satisfaction of Navier's governing equation:

Dilatational (Irrotational)
2
vxu=0; [vz -1 —g—-lu=0
Rotational (Distortional)

vu=0,

2
vz-._l__g__u=0
c,? at?

K+ip
a_A+2p . E(1-v) 3

where ¢ =
' p p(ew(1-2v)  p

c,? = plp
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TABLE 11.2. Wave propagation in an isotropic, elastic (unbounded) solid. Relationships between Navier's
equation and other related governing equations in terms of potential.

General governing equation: Navier's
2
p ig=p\72u +(A+p)vv-u
ot?

Displacement field u(d, )
Necessary and sufficient relations for the satisfaction of Navier's governing equation (above):
u=Vd+Vx{,V-¢=0

Necessary but not sufficient relations for the satisfaction of Navier's governing equation:

2
vvz—__a_¢+vxvz-__1_._a__q[=0
| ¢ at? 2 ot?
T 1 o
v - — Z_|p=0;|v? -————l|!=0
2'\
VZ—L.a_vzd):O
c,? at?

2
vz—i_a__.vz\lyz()
c,? ot?

A+2u _ E(Q-v)
P p(1 +v)(1-2v) P

= plp

where c¢?=




CHAPTER 12

DYNAMIC PLASTIC BEHAVIOUR

12.1. Introduction

In dealing with static plastic problems, we emphasize that the duration of the experiment is
long enough so that the occurring deformation in the material can be considered to be “time-
independent’.

In a dynamic experiment, however, the time duration is very short, to the extent that a
relaxation phenomenon might occur. In this context, the length of the period of the dynamic
plastic experiment may be compared with the relaxation time of the body considered
(Cristescu, 1967). Due to such viscous flow effect, it is often appropriate to include the so-
called “rate-effects” when dealing with dynamic plastic problems. The magnitude of the strain
rate at which a given material commences to be rate sensitive varies from a material to
another. For a large group of metals, this limiting rate of strain seems to be 10° sec™'.

In the present chapter, we deal with the plastic response of engineering materials under
dynamic loading, whereby a rate-effect phenomenon might be occur in the material and,
hence, the inertia forces would be included in the equation of motion.

The first research contributions in the field of dynamic plasticity include the work of both J.
Hopkinson (1872) and B. Hopkinson (1905). Other important contributions in the field were
followed during the period 1930 to 1950 (e.g., Donnell, 1930).

The study of dynamic plasticity is of particular interest in a large number of technical fields,
e.g., high velocity forming of metals, ballistics in general, response of soils under dynamic
loads, etc. All such applications have significantly contributed to the development of the
pertaining theory. In this context, the reader is referred to the books, for instance by,
Goldsmith (1960) and Cristescu (1967). Reference is, also, made to Davies (1953, 1956),
Kolsky (1953), Cristescu (1960a&b, 1970, and 1972), Hopkins (1960, 1961), Craggs (1961),
Olszak et al. (1963), and Cristescu and Bell (1970), among others.

12.2. The Dynamic Plasticity Problem

The one-dimensional problem in dynamic plasticity is defined as the one in which, in a strict
sense,_one.component_of the_stress_and.of particle velocity, as well as a single spatial
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coordinate are involved. In such case, a one-dimensional stress-strain relation is used. Thus,
as dealt with below, one arrives at a single partial differential equation of the first or second
order.

The problem of propagation of elastic-plastic waves in thin rods was the first one-dimensional
problem to have received most attention in the realm of dynamic plasticity. In this context,
special consideration has been given to the “unloading” aspect of the problem. The latter is
the most difficult point to deal with as only numerical methods have been traditionally
successful in locating the “loading/unloading boundary”. In this, the reader is referred to
Ericksen (1955), Hill (1961), Thomas (1961), and Mandel (1962, 1964), among others. For
the study of other categories of one-dimensional problems, e. g., problems that involve
spherical symmetry, but, one component of particle velocity, reference is made to Hunter
(1957), Cristescu (1960 a&b), Goldsmith (1960, 1963), Hopkins (1960), Chadwick (1962),
Olszak and Perzyna (1962), Perzyna (1962), Szczepinski (1964) and Wierzbicki (1963),
among others.

In order to make the transition to more general multi-dimensional problems, one may
consider:

- First, those problems in which several components of the stress and of the velocity are
involved, but in which there is a degree of symmetry so that a single spatial coordinate
is sufficient to describe the motion. Here, one uses a time-independent constitutive
equation that is expressed in a finite form. For such class of problems, the number of
equations involved is, in general, manageable, and the problem can be solved without
too much difficulty.

- On the other hand, if the viscosity of the material cannot be neglected, the
constitutive equations become time-dependent and are often expressed in a differential
form. Thus, the pertaining dynamic plastic problem becomes more involved.

In the two cases mentioned above, several plastic waves, travelling with variable velocities,
may be involved. These waves could be “coupled” or “partially coupled’. Such coupling
effect between several waves, propagating with variable velocities, is the fundamental
property that distinguishes plastic waves from ordinary elastic waves. In general, there are
as many plastic waves as components of the particle velocity in the problem considered,

From the point of view of wave coupling, the constitutive equations may be classified as
“partially coupled” and “coupled’ constitutive response equations, with time-dependency
or independency. In a time-independent problem, both the constitutive equation and the
loading/unloading condition are considered to be time-invariant. Difficult mathematical
problems are often involved particularly in the case of time-dependent coupled equations, in
connection with the numerical methods of integration and with establishing of wave
propagation characteristics (e.g., Cristescu, 1967).
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In order to simplify the difficulties involved in treating generalized problems in
dynamic plasticity, one approach is to consider first those problems which would require'a
one-dimensional constitutive relation. An example of such class of problems is that concerned
with the propagation of waves in extensible strings. In this case, although one constitutive
equation is required, there are two kinds of waves, i.e., “longitudinal” and “transverse”,
which influence one another during propagation.

12.2.1. THE ONE-DIMENSIONAL, TIME-INDEPENDENT PROBLEM

As introduced earlier, the one-dimensional problem is characterized by a single spatial
coordinate. Hence, only single components of stress and strain are considered. Thus, the
propagation of longitudinal stress waves in thin rods or wires is the only possible one-
dimensional situation. In this case, the influence of the shape of the transverse section of the
rod on the propagation of the wave is disregarded, although, the area of this transverse
section is taken into account. The rod, in the one-dimensional problem, is considered to be
slender, so that the lateral inertia would be neglected. This translates into the assumption that
the particles can move freely in the directions transverse to the generatrices of the rod. The
coordinate axis will be chosen with the origin O being located at the end of the rod, and the
positive direction of the OX-axis is considered to be directed along the rod, Fig. 12.1.

Y, YA

0 f-----qo-d------m-mmn- 1---»X,x

L3 u (X, t), 0 (X, ), € (X, 1)
X(t)

Figure 12.]. The one-dimensional problem: A single spatial coordinate is involved, the
influence of the shape of the transverse section of the rod on the propagation of the wave
is disregarded (but, the arca of this transverse section enters into the calculations), and
lateral inertia is neglected.
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The loading Problem
Loading. 1t is defined by the condition that the stress at the end of the rod either increases
continuously, or after increasing up to a certain maximum value, remains constant thereafter.

Following Cristescu (1967), we assume that for t < 0 the rod is at rest, while for t=0 the end
of the rod is impacted by a rigid body so that for t > 0 the particles of the rod are no longer
at rest. We shall assume that the impact occurs in a very short interval of time, so that
buckling of the rod would not occur, or at least be negligible. For simplicity, we assume that
the cross section of the rod, which is plane before the impact, remains plane also after the
impact. This translates into the requirement that all the particles in a given cross section of
the rod will displace parallel to the axis of the rod with equal amounts.

With reference to Fig.12.1, we consider an elemental segment of the rod bound, for t=0, by
the cross-sectional planes at X and X + dX. At time t, these planes will have the coordinates
x(t) and x()+dx(1), or simply x and x+dx, respectively, where x is the Lagrangian
coordinate (see Chapter 3). Considering at 1=0, the cross sectional area of the bar is 4, and
the density is p,, whilst the corresponding quantities at time ¢ are A and p, respectively.
Thus:

- the conservation of mass equation is

PA=p,A (1+€) (12.1)

where € denotes the involved measure of strain.
- the equation of motion, for the element dx, is

A &u _dF
a_t2 “Ix (12.2a)

where F{x, 1) is the force acting on the cross-section of the rod of a coordinate x at time ¢.
Equation (12.2a) can be written, alternatively, as

Fu_3(Aq)

A
P at? dx

(12.2b)

where u is the displacement and o is the stress on the initial cross-sectional area of the rod.
We shall adopt the usual convention for the sign of the stress, i.e., positive in tension and
negative in compression. For simplicity, only positive stresses will be considered. Under the
additional assumption that 4 is constant along the rod, i.e., dA/0x=0, the equation of motion




128

(12.2) can be written as

T T AT (12.3)

- the constitutive equation:

In order to proceed with the solution of the dynamic plasticity problem, one must
include the constitutive equation for the material of the rod, at the considered experimental
conditions, and combine it with the equation of motion (12.3).

Here, we consider that the constitutive equation of the material, during a dynamic
experiment, can be written in the following finite form

0 = f(€) (12.4)

where the function f (€) is usually a monotonously increasing function of the strain €. It is
further assumed that do/de is a monotonously decreasing function of €, €. g., a work-
hardening material, Fig. 12.2. During the entire loading process, it is assumed that the same
constitutive equation (12.4) applies to every cross-section of the rod.

0 »e

Figure 12.2. One-dimensional stress-strain curve for a work-hardening material (a typical
response of majority of metals): o = f (€) with f (€) is a monotonously increasing function
of €, da/de is a monotonously decreasing function of € and o d’o/de? < 0 for any €.
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Combining the constitutive equation (12.4) with the equation of motion (12.3), it follows that

FPu_1do du
at? pde ax? (12.5)

Equation (12.5) is the equation of motion of the rod whose response behaviour is described
by (12.4). The equation of motion (12.5) is a “quasi-linear equation of the second order”.
This equation may be, also, expressed in the following format of a “wave equation of first
order”.

X
av _ de (12.6)
dx Jt
where v = %% is the “particle velocity” and
1 do (12.7)

c(e) = -‘;-&z

is the “velocity of wave propagation”, which is strain-dependent for the case of plastic wave
propagation, and is governed by the slope of the stress-strain curve of the material. For all
kinds of constitutive equations of finite form (12.4) used in practice, c(€)> 0, Cristescu
(1967). Both the equation of motion (12.5) and the wave equation (12.6) are “quasi-linear”
equations, i.e., they are linear with respect to the derivatives of the highest order, but their
coefficients depend on the involved functions and their first derivatives.

Characteristics of the Equation of Motion. In order to establish the wave equation (12.6),
it is necessary to determine the so called “characteristics of the system”. The latter are
represented by curves in the xOt plane, at the intersection of which v and € are
continuous functions of the arguments x and t, but, posses discontinuous derivatives.

In addition to the system of equations (12.6), we consider the following relations (Cristescu,
1967)
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3v_3dvdx, dvdt
ds dx ds Jdt ds
de _dedx dedt (128
ds dxds Jdt ds

where the derivatives dx/ds and dt/ds are computed along one of the “characteristic
directions”, so that dv/ds and de/ds are in effect “directional derivatives” in a characteristic
direction. For the purpose of brevity, we denote in (12.8) dv/ ds by dv, etc. Then, this system
of equations can be written as

av av

dV=-a——dx+—(-3——t-dt
X
(12.9)
ae=§_€.dx+a_€_dt
ax dat

Combining (12.6) and (12.9), one obtains

_c’(dvdt-dedx
-dx?+c2dt?

de _dedx-dvdt

dx -dx?+c?dt?

_c’dedt-dvdx
-dx?+c?dt?

9v v
at ox

which gives the definition of the “characteristics of the equation of motion” as

dx '
—=*c(e 12.10
m (e) ( )

The differential relations satisfied along these lines are referred to as the “consistency
conditions”; see Cristescu (1967). They are written as

dv=+*c(e)de (12.11a)

or
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———=+c(e)-—?, ——=-c(€) — (12.11b)

along the characteristics s, and s,, respectively.

The following points may be concluded concerning the analysis presented above,
pertaining to longitudinal wave propagation in a thin rod of a finite constitutive relation of the
type (12.4), and with common boundary and initial conditions:

- the wave equation (12.5), or the system (12.6), possesses two distinct, real families
of characteristic lines defined by (12.10).

- since (12.5), or (12.6), is quasi-linear, the slopes of the characteristics (12.10) are
variable and depend on the strain function. Accordingly, the characteristics are usually
two families of curves, which can be determined by the solution of the one-
dimensional problem.

- the integration of the wave equation (12.5), or the system (12.6), is equivalent to the
integration of the differential equations (12.11) along the characteristic lines (12.10).

Following the presentation above, one can introduce the following def